Month 1, Week 3: Accompanying Lesson Notes

The Art of Instruction: An Introduction to Programming

Purpose of this Document: This document is designed to be a detailed companion to
the Week 3 lecture. While the slides provide a visual, high-level overview, these notes
will dive deeper into the core concepts, offer alternative analogies, and provide the “why”
behind the “what.” Use this as your primary study guide after the lecture to solidify your
mental models of how programming works.

Module 1: Building a Mental Model of Programming

Beyond the “Dumb House Help” The lecture introduced the “Dumb but Fast House
Help” analogy to highlight a computer’s need for precise, unambiguous instructions. This
is the most important initial concept to grasp. A computer does not understand; it
executes.

Let’s deepen this model. Think of a program not just as a list of instructions, but as a
recipe. A recipe for baking a cake has two key components:

1. Ingredients: The raw materials you work with (flour, sugar, eggs).
2. Steps: The sequence of actions you perform on those ingredients (mix, heat, cool).
In programming:

o The Ingredients are your Data.
o The Steps are your Logic or Algorithms.

Our job as programmers is to write perfect recipes (programs) that take some initial
ingredients (input data) and transform them into a finished cake (output).

The Role of the Interpreter: Your UN Translator The lecture mentioned that a
JavaScript Interpreter (like the V8 Engine in Chrome or the Node.js runtime) translates
your human-readable code into machine code (1s and 0s).

A better mental model is to think of the interpreter as a simultaneous UN translator.
You are an English-speaking diplomat (the programmer) trying to communicate with a
German-speaking diplomat (the computer’s processor).

« You speak a full, logical sentence in English (a line of JavaScript code).

o The translator, sitting in a booth, instantly interprets your sentence into perfect
German and speaks it into the processor’s ear.

o The processor hears the German instruction, understands it perfectly because it’s in
its native tongue, and carries it out.

This happens for every single line of your code, incredibly quickly. This is why we can
write in a high-level language—the interpreter handles the difficult, real-time translation
for us.

Module 2: The Programmer’s Workspace: Context is Key

The lecture showed you three places to run JavaScript. Let’s explore why they are different
and what that means for us as backend engineers.

1. The Browser Console (The REPL): The console is a special environment known
as a REPL (Read-Evaluate-Print Loop).

« Read: It reads the single line of code you type.

o Evaluate: It executes that code immediately.

e Print: It prints the result of that execution.

e Loop: It waits for your next line of code. This makes it feel like a conversation
and is perfect for quick experiments.However, it’s not suitable for writing
multi-line programs.

2. Node.js (The Backend Engine): When you run node app.js, the Node.js
interpreter starts, reads your entire file from top to bottom, and executes it. This is
fundamentally different from the browser. Node.js was designed to give JavaScript
access to the computer’s underlying operating system. This means it can do things
browser JavaScript cannot do for security reasons, such as:

» Read and write files on your computer (fs module).

« Create a web server (http module).

e Connect to a database. This is the core reason Node.js is used for backend
development.

Module 3: The Nature of Data

Data isn’t just “information”; it’s information categorized into specific types. The type
of data determines what you can do with it. You can do math with a Number, but you
can’t do math with a String.

Deeper Dive: Strings A useful mental model for a String is to think of it as a sequence
of characters in a specific order, where each character has an address (an index). The
first character is always at index 0.

In the string Hello™

e His at index 0
e eisatindex 1
e 1is at index 2
e 1is at index 3
e oisat index 4

This concept of indexed positions will become incredibly important when we start working
with arrays and loops.

Deeper Dive: undefined vs. null Let’s use a different analogy to solidify this.
Imagine a form with an optional “Middle Name” field.

If a user is created and they simply don’t fill out the middle name field, the value for
middleName in your program would be undefined. No one ever assigned anything to it.
It’s empty by default.

If a user is asked for their middle name and they explicitly check a box that says “I do not
have a middle name,” you, the programmer, might set the value to null. You are making
an intentional, explicit statement: “The value for this field is confirmed to be empty.”

In summary: undefined is passive emptiness. null is active, intentional emptiness.

Module 4: Variables - Named Pointers to Memory

The “Labeled Jars” analogy is excellent for starting out. A more technically accurate
mental model is to think of a variable as a named pointer to a location in the computer’s
memory.

When you write let myAge = 30;, here’s what happens: * The JavaScript engine finds
an empty spot in the computer’s memory. * It stores the value 30 in that memory spot. *
It creates a label, myAge, and makes that label point to that specific memory address.

When you later use myAge in your code (e.g., console.log(myAge)), the engine looks up
the label myAge, follows the pointer to the memory address, retrieves the value it finds
there (30), and uses it.

Why const is Your Best Friend: Signaling Intent The lecture stated the rule:
Default to const. Let’s explore the deeper why.

Using const is not just about preventing errors. It is a powerful form of communication
to other developers (and your future self). When another developer reads your code and
sees a variable declared with const, they instantly know:

“The value of this variable will never be reassigned. I do not need to track it or worry
about it changing unexpectedly later in this file.”

This dramatically reduces the cognitive load of reading and understanding code. It makes
your programs more predictable, less buggy, and easier to reason about. Using let
signals, “Be aware, this value might change.” Using const signals, “This value is stable
and reliable.”

Module 5 & 6: The Flow of Logic

Redirecting the River A program, by default, is like a river that flows straight from
the first line at the top to the last line at the bottom.

Control Flow Statements like if / else if / else are like dams and gates on that
river. They allow us to test conditions and redirect the flow of execution down different
paths. An if statement is a gate that only opens if a certain condition is true, allowing
the flow to enter that block of code.

A Glimpse Ahead: “Truthy” and “Falsy” In the lecture, we learned that if
statements check for the boolean value true. In practice, JavaScript has a concept of
truthy and falsy values. This is a powerful shortcut.

Certain values, when used in a condition, “behave like” false. These are the falsy
values: * false * 0 * '' (an empty string) * null * undefined * NaN (Not a Number)

Almost every other value in JavaScript is truthy (behaves like true), including all non-
empty strings, all numbers other than 0, arrays, and objects.

Why is this useful? Instead of writing if (username !== '') you can simply write
if (username). If the username string is empty, it will be treated as falsy and the
condition will fail. This is a more concise style you will see frequently. We will explore
this more later, but it is a valuable piece of complementary knowledge.

Assignments

(The in-class and take-home assignments are reproduced here for completeness, as they
are the practical application of the concepts discussed in these notes.)

In-Class Exercise: The Terminal Adventure Game Create a file named
adventure. js and run it using node adventure.js. This exercise is designed to give
you hands-on practice with variables, data types, operators, and if/else logic.

1. Character Setup:

const characterName = 'Alex';
let health = 100;
const hasTorch = true;

2. The First Choice:
const choice = 'enter'; // Try changing to 'wait' later

3. The First if/else Block:

if (choice === 'enter') {
console.log(characterName + ' enters the dark cave...');
if (hasTorch === true) {
console.log('The path is 1lit by the torch!');
} else {

console.log('It is pitch black... You stumble and lose 20 health.');
health = health - 20;

+
} else {
console.log(characterName + ' decides to wait outside.');

}
4. The Second Choice & Block:

const action = 'fight'; // Try 'flee' later
console.log('A goblin appears!');

if (action === 'fight' && health > 20) {

console.log('You bravely fight the goblin and win!');
} else if (action === 'fight' && health <= 20) {

console.log('You are too weak to fight. The goblin defeats you.');
} else {

console.log('You wisely flee back to the cave entrance.');

+
5. Final Output:
console.log('End of adventure. Final health: ' + health);

Take-Home Assignment: The Universal Translator Create a file named
translator.js. This assignment will solidify your understanding of using conditional

logic to produce different outputs based on an input variable.
1. Setup:

const languageCode = 'es'; // Change this to 'fr', 'de', 'en', etc. to test
let greeting; // We will assign this in the logic block

2. The Logic: Write an if / else if / else block to check the value of

languageCode.

if (languageCode === 'es') {
greeting = 'Hola, Mundo';

} else if (languageCode === 'fr') {
greeting = 'Bonjour, le monde';

} else if (languageCode === 'de') {
greeting = 'Hallo, Welt';

} else {

// A default case for any other language, including English
greeting = 'Hello, World';
i

3. The Output: At the end of the file, print the final result.
console.log(greeting) ;

4. Submission: Submit your translator. js file via a Pull Request to your personal
assignments repository, following the branching workflow we learned last week.

	Month 1, Week 3: Accompanying Lesson Notes
	The Art of Instruction: An Introduction to Programming
	Module 1: Building a Mental Model of Programming
	Module 2: The Programmer’s Workspace: Context is Key
	Module 3: The Nature of Data
	Module 4: Variables - Named Pointers to Memory
	Module 5 & 6: The Flow of Logic
	Assignments

