
Month 6, Week 4: The Unabridged Learning Guide

Introduction: The Architect’s Final Exam
For six months, you have been on a journey. You began as an apprentice, learning the
fundamental tools of our craft: the command line, the Git repository, the grammar of
JavaScript. You progressed to become a builder, architecting and constructing complete,
secure, and data-driven applications with professional frameworks like NestJS. You learned
the science of engineering, mastering the algorithms and data structures that separate
performant systems from failed ones. You learned to think in systems, to deploy with
confidence, and to automate your workflow.

This week, your final week, you are no longer a student. You are an architect.

This is your final exam, but it is not a test of memorization. It is a test of application.
The Capstone Project is your opportunity to synthesize every skill you have acquired
into a single, comprehensive, and professional-grade backend system. Working in a team,
you will face the same challenges a senior engineer faces every day: clarifying requirements,
designing a robust architecture, making technical trade-offs, and delivering a high-quality
product.

This guide will serve as your blueprint for this final challenge. It will outline the project
expectations, suggest ambitious ideas to test your limits, and provide a framework for
the professional polish that will turn your project into the centerpiece of your portfolio.
Your final presentation will not just be a demo; it will be a professional portfolio review,
preparing you for the technical interviews and career that lie ahead.

You have the knowledge. You have the skills. It is time to build.

Table of Contents

1. Module 1: The Capstone Challenge
• The Objective: From Zero to Production-Ready
• The “Definition of Done”: A Checklist for Excellence

2. Module 2: Project Ideation - Choosing Your Challenge
• Project 1: The E-commerce Platform API
• Project 2: The Real-Time Bidding API
• Project 3: The Food Delivery Service API

3. Module 3: The Architect’s Blueprint & Professional Polish
• The Design Document: Your Master Plan
• The Professional README.md
• Preparing for the Portfolio Review

4. Final Guidance & Next Steps

Module 1: The Capstone Challenge

The Objective: From Zero to Production-Ready Your final task is to work in
a team of three to design, build, test, document, and containerize a complete backend

1

system from scratch. This project will serve as the primary entry in your professional
portfolio and will be the subject of your final review.

The “Definition of Done”: A Checklist for Excellence A project is not “done”
when it “works.” It is done when it is professional. Your final submission will be graded
against these criteria:

• [] Correct & Functional: The API works as designed and meets all the core
functional requirements you have defined.

• [] Well-Architected: The project follows NestJS principles (a modular structure,
clear separation of concerns between controllers and services, use of DI). The code
is clean, readable, and consistent.

• [] Secure: Implements robust authentication (JWT) and authorization
(Guards, Role-Based Access Control). All data is validated using DTOs and the
ValidationPipe.

• [] Data-Driven: The application is connected to a persistent PostgreSQL database
using TypeORM, with well-defined entities and relationships.

• [] Tested: The project has a comprehensive test suite.
– Unit Tests: Services should have high test coverage, with dependencies

mocked.
– Integration Tests: Critical data pathways are tested against a real test

database.
– E2E Tests: The most important API endpoints are tested from the outside

via Supertest.
• [] Documented: The project is easy for another developer to understand and run.

– A professional README.md is mandatory.
– API documentation (using a tool like Swagger, or simply clear documentation

in the README) is mandatory.
• [] Containerized: The entire application stack (API, database, cache) can be

started with a single docker-compose up command. A production-ready, multi-
stage Dockerfile is mandatory.

• [] Automated: A ci.yml file for GitHub Actions is present, which automatically
runs the linter and the full test suite on every push and pull request to the main
branch.

Module 2: Project Ideation - Choosing Your Challenge

Project 1: The E-commerce Platform API

• Core Challenge: A classic but comprehensive project that requires a solid under-
standing of relational data.

• Potential Data Model:
– Users (id, name, email, password, role)
– Products (id, name, description, price, stock_quantity)
– Orders (id, userId, status, total, created_at)
– OrderItems (id, orderId, productId, quantity, price) - a “join table” for the

many-to-many relationship.
• Key API Endpoints:

2

– POST /auth/register, POST /auth/login
– GET /products, GET /products/:id
– POST /products (Admin only)
– GET /cart, POST /cart/items, DELETE /cart/items/:itemId
– POST /orders (Checkout)
– GET /orders, GET /orders/:id (User can only see their own)

Project 2: The Real-Time Bidding API

• Core Challenge: This project focuses on managing state over time and handling
potential race conditions.

• Potential Data Model:
– Users
– Items (id, name, description, starting_price, auction_end_time, owner_id)
– Bids (id, itemId, userId, amount, created_at)

• Key API Endpoints:
– POST /items (Create a new auction item)
– GET /items, GET /items/:id
– POST /items/:id/bids (Place a new bid)

• Architectural Challenges:
– The POST /items/:id/bids endpoint is a critical section. You must ensure

that a new bid is higher than the current highest bid. This might require a
database transaction to prevent race conditions.

– How do you handle the end of an auction? A background job scheduler (or a
simple cron job) is needed to run every minute, find auctions that have ended,
and notify the winner. This is a great place to use a message queue.

Project 3: The Food Delivery Service API

• Core Challenge: This project is about managing complex relationships and
different user roles with distinct permissions.

• Potential Data Model:
– Users (with a role: customer, restaurant_owner, courier)
– Restaurants (id, name, address, owner_id)
– MenuItems (id, name, price, description, restaurant_id)
– Orders (id, customer_id, restaurant_id, courier_id, status, total)

• Key API Endpoints:
– POST /restaurants (Owner only)
– POST /restaurants/:id/menu-items (Owner of that restaurant only)
– GET /restaurants (Public)
– POST /orders (Customer only)
– PATCH /orders/:id/accept (Courier only)
– PATCH /orders/:id/status (Owner or Courier, depending on the status

change)
• Architectural Challenges:

– This project requires a robust Role-Based Access Control (RBAC) system. You
will need to create multiple guards or a very flexible RolesGuard to handle the
complex permissions.

3

– The order status is a state machine. You need to ensure that status transitions
are valid (e.g., an order cannot go from delivered back to preparing).

– A message queue could be used to broadcast new, available orders to nearby
couriers.

Module 3: The Architect’s Blueprint & Professional Polish

The Design Document: Your Master Plan This is your first deliverable. Before
coding, your team must agree on the architecture. This document forces you to think
through the entire system and will save you countless hours of rework. It must be clear,
concise, and agreed upon by all team members.

The Professional README.md This is the most important piece of documentation you
will write. It is the first thing a future employer or collaborator will see. It must be
excellent. Use Markdown to its full potential: headings, lists, code blocks, and tables.

Preparing for the Portfolio Review Your final presentation will be a 15-minute
demo and architectural review. You will be expected to: 1. Demonstrate the API: Use
a tool like Postman to demonstrate your key API endpoints working live. 2. Explain
Your Architecture: Walk through your high-level design. Why did you choose the
database schema you did? How do your services interact? 3. Showcase Your Code
Quality: Briefly show a controller, a service, and a test file. Explain your logic. Be
prepared to defend your decisions. 4. Discuss Your CI/CD Pipeline: Show your
GitHub Actions workflow and explain what it does. 5. Reflect on the Challenges:
What was the hardest part? What would you do differently next time? What trade-offs
did you make? This is where you demonstrate a senior mindset.

Final Guidance & Next Steps

This capstone project is the most important work you will do in this program. It is your
final exam and the beginning of your professional portfolio.

Treat your teammates not as classmates, but as fellow engineers. Use Git and GitHub
professionally. Create pull requests for all your work and perform code reviews for each
other. Communicate clearly and constantly.

You have all the tools. You have the knowledge. You have the architectural foundation.

Now, go build. ‘

4

	Month 6, Week 4: The Unabridged Learning Guide
	Introduction: The Architect’s Final Exam
	Table of Contents
	Module 1: The Capstone Challenge
	Module 2: Project Ideation - Choosing Your Challenge
	Module 3: The Architect’s Blueprint & Professional Polish
	Final Guidance & Next Steps

