Month 6, Week 3: The Unabridged Learning Guide

Introduction: The Architect’s Blueprint

For the past several months, we have been immersed in the “how” of software engineering.
We have mastered the languages, frameworks, and tools required to build complex, secure,
and performant backend services. This week, we ascend to the final level of our training.
We move from the “how” to the “why.” We learn to think not just as a coder, but as an
architect.

System Design is the high-level process of defining the architecture for a system that
will meet a specific set of requirements. It is not about writing code. It is about drawing
the boxes and arrows on the whiteboard. It is about understanding the trade-offs between
different databases, caching strategies, and scaling patterns. It is the discipline of creating
the blueprint for a system that can handle millions of users, remain available in the face
of failure, and respond with lightning speed.

This is the most critical and challenging skill that separates a junior developer from a
senior technical leader, and it is the primary focus of technical interviews at top-tier
technology companies.

In this lesson, we will first establish a robust, repeatable framework for approaching any
system design problem. We will then take a deep dive into the core components that form
the toolkit of every system architect: load balancers, database scaling patterns, caches,
and CDNs. We will explore the fundamental trade-off of all distributed systems through
the lens of the CAP Theorem.

Finally, we will put it all together by applying our framework to a classic design problem:
building a scalable URL shortener. This is where theory becomes practice, and you begin
your final transformation into a true backend architect.

Table of Contents

1. Module 1: A Framework for System Design
o Functional vs. Non-Functional Requirements
e Back-of-the-Envelope Estimation

2. Module 2: The Core Components of Scale
o Load Balancing
o Database Scaling: Replication and Sharding
» Caching Strategies
« Content Delivery Networks (CDNs)

3. Module 3: The CAP Theorem
« Consistency, Availability, Partition Tolerance
e The Real-World Trade-off: CP vs. AP

4. Module 4: A Practical Design Example: URL Shortener
o Step-by-Step Design and Evolution

5. Take-Home Assessment: Designing “Insta-Clone”




Module 1: A Framework for System Design

A structured approach is crucial. When faced with a vague prompt like “Design Twitter,”
you must create order out of ambiguity.

1. Step 1: Requirements Clarification: Ask questions to narrow the scope.

2. Step 2: Back-of-the-Envelope Estimation: Use reasonable assumptions to
estimate the scale.

3. Step 3: High-Level Design: Draw the major components and their connections.

4. Step 4: Deep Dive & Bottlenecks: Identify the weakest points in your design
and propose solutions.

Functional vs. Non-Functional Requirements

« Functional: What the system does. (e.g., A user can post a message.)
« Non-Functional (NFRs): The qualities of the system. This is the most important
part of a senior-level design discussion.

— Availability: The percentage of time the system is operational. Measured in
“nines” (e.g., 99.99% uptime, which allows for ~52 minutes of downtime per
year).

— Scalability: The system’s ability to handle a growing amount of load.

— Latency: The time it takes to serve a request. Often discussed in terms of
percentiles (e.g., p95 or p99 latency, meaning 95% or 99% of requests are faster
than a certain time).

— Durability: The guarantee that data, once written, will not be lost.

— Consistency: The guarantee that all clients see the same data at the same
time.

Back-of-the-Envelope Estimation This is about making reasonable, ballpark esti-
mates to guide your design. * Traffic Estimates (QPS - Queries Per Second): How
many read and write requests per second will the system handle? * Storage Estimates:
How much data will be stored over a period of years? * Bandwidth Estimates: How
much data will be transferred in and out?

Knowing these numbers tells you if a single server is enough, or if you need to plan for a
globally distributed fleet from day one.

Module 2: The Core Components of Scale

Load Balancing A load balancer distributes traffic across your horizontally-scaled
application servers. * Algorithms: * Round Robin: Cycles through the list of servers
sequentially. * Least Connections: Sends traffic to the server that currently has the
fewest active connections. * TP Hash: Ensures that a user from a specific IP address will
always be sent to the same server. * L4 vs. L7 Load Balancers: * L4 (Transport
Layer): Operates at the TCP/UDP level. Tt just forwards packets and is very fast. * L7
(Application Layer): Understands HTTP. It can make smarter routing decisions based
on the request path, headers, or cookies.



Database Scaling: Replication and Sharding

« Replication (Leader-Follower):

— Architecture: One Leader (master) database handles all INSERT, UPDATE,
DELETE operations. This data is then replicated to one or more Follower
(replica) databases.

— Use Case: Perfect for read-heavy workloads. Your application can direct all
write traffic to the leader and all read traffic to the followers, dramatically
scaling read capacity.

« Sharding (Horizontal Partitioning):

— Architecture: The data itself is partitioned across multiple, independent
databases. A “shard key” (e.g., user_id) is used to determine which database
a piece of data belongs to.

— Use Case: Essential for write-heavy workloads or when a dataset becomes too
large to fit on a single server. It is extremely powerful but also adds significant
complexity to the application (e.g., how do you run a query that needs data
from multiple shards?).

Caching Strategies We place a cache like Redis between our application and our
database. * Cache-Aside: The application is responsible for managing the cache. (Look
in cache -> if miss -> get from DB -> put in cache). * Read-Through: The application
talks to the cache, and the cache is responsible for fetching from the DB on a miss. *
Write-Through: The application writes to the cache, and the cache synchronously
writes to the DB. Keeps data consistent but adds latency to writes.

Content Delivery Networks (CDNs) A CDN is a global cache for your static files.
When a user in Japan requests an image, it is served from a CDN “edge server” in Tokyo,
not from your main server in Virginia. This dramatically reduces latency by minimizing
the physical distance the data has to travel.

Module 3: The CAP Theorem
Consistency, Availability, Partition Tolerance

» Consistency: All nodes in a distributed system have the same view of the data at
the same time. A read is guaranteed to return the most recent write.

o Availability: Every request receives a non-error response. The system is always
“on.”

o Partition Tolerance: The system continues to function even if communication

between nodes is lost (a network partition).
The theorem states that in the real world, where network partitions (P) are a certainty,
you must make a trade-off between C and A.
The Real-World Trade-off: CP vs. AP

« CP (Choose Consistency over Availability): When a partition occurs, the
system will refuse to respond to requests that it cannot guarantee are consistent.



This is the choice for systems where correctness is paramount, like banking or
e-comimerce inventory.

AP (Choose Availability over Consistency): When a partition occurs, the
system will continue to respond, even if the data is stale. The data will become
“eventually consistent” once the partition is resolved. This is the choice for systems
where being online is more important than perfect, real-time consistency, like social
media feeds or “like” counts.

Module 4: A Practical Design Example: URL Shortener

(A detailed walkthrough applying the 4-step framework, covering estimations, API design
(POST /shorten, GET /<hash>), database schema ((hash, long_url)), and evolving the
design from a single server to a globally distributed, highly-available system with load
balancers, read replicas, and a Redis cache for the hot path GET request).

Take-Home Assessment: Designing “Insta-Clone”

Objective: To demonstrate your understanding of the system design framework and
architectural components by producing a high-level design document for a complex,
read-heavy application.

The Task: Write a Markdown document that provides a high-level design for a simplified,
photo-centric social media service like Instagram. You do not need to write any code.

Your design document must include the following sections:

1. Requirements Clarification:

o List the core Functional Requirements (e.g., users can upload photos, users can
follow other users, users can see a feed of photos from people they follow).

o List the most important Non-Functional Requirements (e.g., the feed must
load quickly, the system must be highly available).

. Back-of-the-Envelope Estimation:

o Make reasonable assumptions about the number of users, daily posts, and feed
loads to estimate your QPS (Queries Per Second) for reads and writes, and
your total storage requirements.

. High-Level API Design:

o Define the key API endpoints (e.g., POST /posts, GET /feed, POST
/users/:id/follow).

. Database Schema Design:

o Design the necessary SQL tables (users, posts, follows, etc.), including
columns and relationships.

. High-Level Architectural Diagram:

o Create a text-based or ASCII art diagram showing the high-level components
of your scaled design (Load Balancer, API Servers, Database Read Replicas,
Caches, etc.) and how they connect.

. Deep Dive & Justification:



o Specifically address how you would generate the user’s home feed. Discuss the
trade-offs between a “fan-out on read” vs. a “fan-out on write” approach and
justify which one you would choose and why.

« Explain your caching strategy. What would you cache? Where would you
cache it?

Submission: Submit your design_document.md file via a Pull Request to your personal
assignments repository.



	Month 6, Week 3: The Unabridged Learning Guide
	Introduction: The Architect’s Blueprint
	Table of Contents
	Module 1: A Framework for System Design
	Module 2: The Core Components of Scale
	Module 3: The CAP Theorem
	Module 4: A Practical Design Example: URL Shortener
	Take-Home Assessment: Designing “Insta-Clone”



