Month 6, Week 2: The Unabridged Learning Guide

Introduction: The Architect’s Advanced Toolkit

Last week, we laid the scientific foundation for our work as engineers. We learned the
language of performance, Big O Notation, and used it to analyze the fundamental linear
data structures that underpin so much of our code. We have now moved beyond simply
making code work; we are learning to make it work well.

This week, we expand our toolkit into the world of non-linear data structures and
master the fundamental algorithms for searching and sorting that are the bedrock of
computer science. These are not abstract academic topics; they are the solutions to some
of the most common and critical performance bottlenecks in backend development.

First, we will take a deep dive into Hash Tables, the data structure that powers
JavaScript’s Objects and Maps and provides the near-instant lookups that modern applica-
tions demand. We will then explore hierarchical data with Trees, focusing specifically on
the Binary Search Tree (BST), the structure that makes database indexes incredibly
fast. We will also introduce the conceptual framework for Graphs, the ultimate data
structure for modeling complex networks and relationships.

In the second half of our lesson, we will shift from organizing data to processing it. We
will contrast the slow but simple Linear Search with the lightning-fast Binary Search.
Finally, we will tackle one of the most classic computer science problems: sorting. We
will implement and analyze four key sorting algorithms, from the simple but inefficient
Bubble Sort and Insertion Sort to the powerful, “divide and conquer” strategies of
Merge Sort and Quick Sort.

By the end of this lesson, you will have a deep, practical understanding of the trade-offs
between these advanced tools, enabling you to make the intelligent, informed architectural
decisions that define a senior engineer.

Table of Contents

1. Module 1: Hash Tables - The Engine of O(1)
o The Hash Function and Collisions
o Collision Resolution: Separate Chaining
o JavaScript’s Implementations: Object vs. Map
2. Module 2: Trees - The Hierarchical Structure
e Tree Terminology
 Binary Search Trees (BSTs)
e Implementation and Performance
3. Module 3: Graphs - The Network Model
o Graph Terminology
» Representing Graphs: Adjacency List vs. Adjacency Matrix
4. Module 4: Fundamental Searching & Sorting Algorithms
e Searching: Linear vs. Binary Search
o Simple Sorting: Bubble Sort & Insertion Sort
o Efficient Sorting: Merge Sort & Quick Sort



5. Take-Home Assessment: The Sorting Algorithm Analyzer

Module 1: Hash Tables - The Engine of O(1)

The Hash Function and Collisions A hash table is a combination of two things: an
array (the underlying storage) and a hash function. The hash function is a “magic’
function that takes a key of any type and deterministically converts it into an integer,
which is then used as an index into the array.

b

A good hash function should be: * Fast: It needs to compute the index quickly. *

Deterministic: The same key must always produce the same index. * Uniform: It
should distribute keys as evenly as possible across the available array slots to minimize
collisions.

A collision is the unavoidable event where two different keys produce the same hash
index.

Collision Resolution: Separate Chaining The most common way to handle collisions
is to have each slot in the underlying array point to another data structure, typically a
linked list. When a collision occurs, you simply traverse the linked list at that index. If
the key already exists, you update the value. If it doesn’t, you add a new node to the end
of the list.

This is why the worst-case complexity of a hash table is 0(n). If a terrible hash function
maps every single key to the same index, the hash table effectively degrades into a single,
slow linked list.

JavaScript’s Implementations: Object vs. Map

e Object: The classic implementation. Keys are coerced to strings or symbols. It’s
highly optimized by the V8 engine for many use cases.
e Map: A more modern and often superior implementation.
— Key Types: Map can use any data type as a key, including objects and
functions, without string coercion.
— Performance: For scenarios involving frequent additions and deletions of keys,
Map can be significantly faster.
— Features: Map has a built-in . size property, is directly iterable, and guarantees
that it maintains the insertion order of its elements.

Module 2: Trees - The Hierarchical Structure
Tree Terminology

e Root: The single topmost node.

o Parent: A node that has a reference to other nodes.
o Child: A node that is referenced by a parent.

o Leaf: A node with no children.

o Edge: The connection between two nodes.



o Height: The length of the longest path from the root to a leaf.
e Depth: The length of the path from the root to a specific node.

Binary Search Trees (BSTs) A BST is a node-based binary tree data structure which
has the following properties: * The left subtree of a node contains only nodes with keys
lesser than the node’s key. * The right subtree of a node contains only nodes with keys
greater than the node’s key. * The left and right subtree each must also be a binary search
tree.

This ordering principle is what allows for 0(log n) search times.

Implementation and Performance Search (find): 1. Start at the root. 2. Compare
the target value with the current node’s value. 3. If they match, you've found it. 4. If the
target is less, move to the left child. 5. If the target is greater, move to the right child.
6. Repeat until you find the value or you hit null (meaning the value isn’t in the tree).

Insertion (insert): You follow the exact same logic as find. You traverse the tree until
you find a null spot where the new node should be placed, and then you insert it there.

The Catch: Balanced vs. Unbalanced Trees The 0(log n) performance is only
guaranteed if the tree is balanced. If you insert sorted data (1, 2, 3, 4, 5) into a
simple BST, it will create a completely unbalanced tree that looks and performs exactly
like a linked list, degrading all operations to 0(n). Self-balancing trees (like AVL trees
or Red-Black trees) are more complex data structures that automatically restructure
themselves on insertion to maintain a balanced state and guarantee 0(log n) performance.

Module 3: Graphs - The Network Model
Graph Terminology

« Vertex (or Node): A point or entity in the graph.

« Edge (or Link): A connection between two vertices.

e Directed Graph: Edges have a direction (e.g., Twitter, where you can follow
someone without them following you back).

« Undirected Graph: Edges are bidirectional (e.g., Facebook, where friendship is
mutual).

« Weighted Graph: Edges have a “cost” or “weight” associated with them (e.g., a
map where edges are roads and the weight is the distance).

Representing Graphs: Adjacency List vs. Adjacency Matrix

« Adjacency Matrix: A 2D array (a matrix) where matrix[i] [j] = 1 if there is
an edge between vertex i and vertex j, and O otherwise. Pros: Fast to check if an
edge exists. Cons: Uses a lot of space (V?), which is inefficient for sparse graphs
(graphs with few edges).

« Adjacency List: An array (or hash map) where the index corresponds to a vertex,
and the value is a list of all vertices it is connected to. Pros: Space-efficient for
sparse graphs. Cons: Slower to check if a specific edge exists (requires searching
the list). This is the most common representation in practice.



Module 4: Fundamental Searching & Sorting Algorithms
Searching: Linear vs. Binary Search

o Linear Search: Simple but slow. It iterates through every element from start to
finish. It has a time complexity of O(n) and works on any unsorted list.

o Binary Search: Fast but requires a sorted list. It repeatedly divides the search
interval in half. It has a time complexity of O(log n).

Simple Sorting: Bubble Sort & Insertion Sort

o Bubble Sort: The simplest, but most naive sorting algorithm. It makes multiple
passes through the array, repeatedly swapping adjacent elements that are out of
order. It has a time complexity of O(n?) and is almost never used in practice.

o Insertion Sort: Builds the final sorted array one item at a time. It’s like sorting a
hand of playing cards. It iterates through the input and, for each element, finds its
correct place in the already-sorted part of the array and inserts it there. It also has
a time complexity of O(n2), but it’s very efficient for small or nearly-sorted arrays.

Efficient Sorting: Merge Sort & Quick Sort These are the “divide and conquer”
algorithms that are used in real-world applications.

e Merge Sort:

1. Divide: Recursively split the array in half until you have arrays of one element
(which are inherently sorted).

2. Conquer: Merge the sorted sub-arrays back together. A helper function
merges two sorted arrays into a single sorted array.

— Performance: It has a guaranteed time complexity of O(n log n) in all cases.
Its main drawback is that it requires O(n) extra space for the temporary arrays
used during the merge step.

e Quick Sort:

1. Divide: Pick an element from the array (the “pivot”).

2. Conquer: Reorder the array so that all elements with values less than the
pivot come before it, while all elements with values greater than the pivot come
after it (the “partition” step).

3. Recursively apply the above steps to the sub-arrays of elements with smaller
and greater values.

— Performance: Its average-case time complexity is O(n log n). However, its
worst-case complexity (which occurs with a poor pivot choice on already-sorted
data) is O(n2?). In practice, with a good pivot strategy (like picking a random
element), it is often faster than Merge Sort because it can sort “in-place” with
only O(log n) space complexity for the recursion stack.

Take-Home Assessment: The Sorting Algorithm Analyzer

Objective: To demonstrate a deep understanding of sorting algorithms by implementing
and analyzing their performance.



The Task: Create a TypeScript project to implement and compare two sorting algorithms:
Insertion Sort and Merge Sort.

1. Implement the Algorithms: * Create a file sorting.ts. * Inside, write a func-
tion insertionSort(arr: number[]): number[]. * Write a function mergeSort (arr:
number []) : number[]. You will likely need a helper function for the merging step.

2. Create the Analyzer: * Create a file analyzer.ts. * Import your sorting functions.
* Create a large, unsorted array of random numbers (e.g., 10,000 items). * Use JavaScript’s
performance.now() or console.time() / console.timeEnd () to measure how long each
sorting function takes to sort the large array. * Log the results to the console, comparing
the execution times.

3. Write a README.md file: * In this file, briefly explain the results you observed. Why
was one algorithm so much faster than the other? What are the Big O complexities of
each, and how do your results reflect that?

Submission: Submit your entire project via a Pull Request to your personal assignments
repository.



	Month 6, Week 2: The Unabridged Learning Guide
	Introduction: The Architect’s Advanced Toolkit
	Table of Contents
	Module 1: Hash Tables - The Engine of O(1)
	Module 2: Trees - The Hierarchical Structure
	Module 3: Graphs - The Network Model
	Module 4: Fundamental Searching & Sorting Algorithms
	Take-Home Assessment: The Sorting Algorithm Analyzer



