Month 6, Week 1: The Unabridged Learning Guide

Introduction: The Science of Engineering

For the past five months, we have been training as software architects. We have mastered
the tools, the languages, the frameworks, and the patterns necessary to build complex,
scalable, and secure backend applications. We have learned how to make our code work.
This month, we learn how to make it work well. We transition from being skilled crafts-
people to being true computer scientists.

This week, we dive into the foundational science of our profession: Algorithms and
Data Structures (DSA).

This is not an abstract academic exercise. The choice of a data structure and the design
of an algorithm are the most fundamental performance decisions an engineer can make.
A brilliant choice can allow an application to scale to millions of users; a poor choice can
cause it to crumble under a fraction of that load.

We will begin by learning the universal language for analyzing performance: Big O No-
tation. This mathematical notation allows us to reason about an algorithm’s efficiency
and predict how it will behave as the input size grows. We will then use this new lens
to analyze the linear data structures that form the bedrock of so many applications. We
will revisit Arrays to understand their performance characteristics on a deeper level. We
will then introduce Linked Lists, exploring their unique trade-offs.

Finally, we will explore two fundamental Abstract Data Types: Stacks (LIFO) and
Queues (FIFO). We will learn their rules, their real-world use cases (like the JavaScript
call stack and event loop), and how to implement them efficiently using the primitive
structures we’ve already mastered. Every concept will be implemented in TypeScript to
maintain our professional standard of type safety.

Table of Contents

1. Module 1: The Language of Performance - Big O Notation
e« Why Time and Space Matter
o Core Complexity Classes: O(1), O(log n), O(n), O(n log n), O(n?)
2. Module 2: Linear Data Structures
o Arrays: A Deep Dive into Performance
o Linked Lists: The Chain of Nodes
o Arrays vs. Linked Lists: The Core Trade-off
3. Module 3: Abstract Data Types - Stacks and Queues
« Stacks: Last-In, First-Out (LIFO)
o Queues: First-In, First-Out (FIFO)
4. Take-Home Assessment: The Infix to Postfix Converter

Module 1: The Language of Performance - Big O Notation

Why Time and Space Matter As a senior architect, your concerns go beyond simple
functionality. You must consider how your application will perform under load. * Time
Complexity: How does the execution time of an algorithm change as the input data
grows? An algorithm that is fast for 100 users might be unacceptably slow for 1,000,000
users. * Space Complexity: How does the amount of memory an algorithm needs
change as the input data grows? An algorithm that uses a few megabytes for a small
input might consume gigabytes for a large one, crashing your server.

Big O notation is the standard for discussing these complexities. It describes the asymp-
totic behavior of a function—its rate of growth as the input size n approaches infinity.
It focuses on the “big picture” and ignores constants and less significant terms.

Core Complexity Classes: O(1), O(log n), O(n), O(n log n), O(n2)

e O(1) - Constant Time: The best possible complexity. The number of operations
does not change, no matter the size of n.

e O(log n) - Logarithmic Time: Excellent. The number of operations increases by
one each time n doubles. This is characteristic of “divide and conquer” algorithms.

— Example: Binary Search. To find an item in a sorted array of 1,000,000
items, you only need about 20 comparisons.

e O(n) - Linear Time: Good. The number of operations grows in a direct, one-to-
one relationship with n.

e O(n log n) - Log-Linear Time: Very good. This is the complexity of the most
efficient sorting algorithms (like Merge Sort and Quick Sort).

e O(n2?) - Quadratic Time: Becomes slow very quickly. Often involves a nested
loop over the same collection. An input of 10,000 items could mean 100,000,000
operations.

e« O(2) and O(n!) - Exponential and Factorial Time: Extremely slow. These
are generally unacceptable for anything but the smallest inputs.

Module 2: Linear Data Structures
Arrays: A Deep Dive into Performance

o« Memory Layout: Arrays are a contiguous block of memory. This means arr[0],
arr[1], arr[2], etc., are all located right next to each other in RAM.
o Time Complexity:
— Access (arr[il): 0(1). Because of the contiguous memory, the computer
can perform a simple mathematical calculation (start address + index *
item size) to instantly find the location of any element.
— Search: 0(n). Without knowing the index, you must check each element one
by one in the worst case.
— Push/Pop (End): 0(1). Adding or removing from the end is very fast.
— Unshift /Shift (Beginning): 0(n). Adding or removing from the beginning
requires re-indexing every single element in the array.

Linked Lists: The Chain of Nodes A linked list is made of Node objects that are not
stored contiguously in memory. Each node has two parts: its value and a next pointer
that holds the memory address of the next node.

TypeScript Implementation:

class ListNode<T> {
public value: T;

public next: ListNode<T> | null = null;

constructor(value: T) {
this.value = value;

class LinkedList<T> {
public head: ListNode<T> | null = null;

// ... methods to add, remove, and find nodes

Arrays vs. Linked Lists: The Core Trade-off

Array Time Linked List Time

Operation Complexity Complexity Winner
Indexed Access 0(1) 0(n) Array
Search (by value) 0(n) 0(n) (Tie)
Insertion (start) 0(n) 0(1) Linked List
Deletion (start) 0(n) 0(1) Linked List
Insertion (end) 0(1) 0(1)* (Tie)
Deletion (end) 0(1) 0(n)** Array

* 0(1) for a linked list if you maintain a tail pointer. ** O(n) because to find the new
tail, you must traverse from the head to the second-to-last node.

Module 3: Abstract Data Types - Stacks and Queues

An Abstract Data Type (ADT) is a theoretical model. It defines a set of operations but
does not specify how those operations are implemented.

Stacks: Last-In, First-Out (LIFO)

e Operations:

push(item): Add to the top.

pop(): Remove from the top.

— peek(): View the top item.

— isEmpty(): Check if the stack is empty.

o Implementation: An array is an excellent choice because push and pop are both
0(1).

TypeScript Stack Implementation:

class Stack<T> {
private storage: T[] = [];

push(item: T): void {
this.storage.push(item);

pop(): T | undefined {
return this.storage.pop();

}
// ... other methods

Queues: First-In, First-Out (FIFO)

e Operations:
— enqueue(item): Add to the back.
— dequeue(): Remove from the front.
— peek(): View the front item.
— isEmpty(): Check if the queue is empty.

o Implementation with an Array: A naive implementation using push and shift
is simple to write but inefficient. The shift() operation is 0(n), which can be a
bottleneck.

e A More Performant Implementation: For a high-performance queue, a
Linked List is the superior choice. Enqueueing is adding a new tail, and
dequeueing is removing the head, both of which are 0(1) operations.

Take-Home Assessment: The Infix to Postfix Converter

Objective: To demonstrate a deep understanding of the Stack data structure by imple-
menting a classic computer science algorithm.

The Task: In mathematics, “infix” notation is the way we normally write expressions
(e.g., 3 + 4). “Postfix” or “Reverse Polish Notation” (RPN) is a way of writing expressions
where the operator comes after the operands (e.g., 3 4 +). It is easier for computers to
parse. Your task is to write a function that converts an infix expression to a postfix
expression using a Stack. This is a variation of Shunting-yard algorithm.

1. Create a Stack class in TypeScript.

2. Write the infixToPostfix(expression: string): string function. * You will need
a stack to hold operators and a precedence map for +, -, *, /. * Loop through each
token in the input expression string. * If the token is a number: Append it to your
result string. * If the token is an operator: While the stack is not empty and the
operator at the top of the stack has higher or equal precedence, pop from the stack and

append to your result. After the loop, push the current operator onto the stack. * If
the token is an open parenthesis (: Push it onto the stack. * If the token is a
close parenthesis): Pop from the stack and append to your result until you find the
matching open parenthesis. * After the main loop, pop any remaining operators from
the stack and append them to the result.

Test Cases: * "3 + 4 * 2" should become "3 4 2 * +" * *(3 + 4) * 2" should become
"3 4 4 2 kv

Submission: Submit your TypeScript file containing the Stack class and the conversion
function via a Pull Request to your personal assignments repository. *

	Month 6, Week 1: The Unabridged Learning Guide
	Introduction: The Science of Engineering
	Table of Contents
	Module 1: The Language of Performance - Big O Notation
	Module 2: Linear Data Structures
	Module 3: Abstract Data Types - Stacks and Queues
	Take-Home Assessment: The Infix to Postfix Converter

