Month 5, Week 4: The Unabridged Learning Guide

Introduction: The Automated Assembly Line

Over the past few weeks, we have mastered the art of building and containerizing a single
application. We have a professional, production-grade Dockerfile that packages our
NestJS API into a portable, consistent unit. However, a real-world application is rarely
a single unit. It is a system of collaborating services—an API, a database, a cache, a
message queue, and more.

Managing these services individually is complex and error-prone. This week, we learn to
become conductors of our own software orchestra. We will master Docker Compose, the
tool that allows us to define, orchestrate, and run our entire multi-container application
with a single command. We will learn how to manage application secrets and configuration
professionally using environment variables, completely decoupling our code from the
environment it runs in.

Then, we will take the final and most crucial step in a senior architect’s workflow:
automation. We will introduce the philosophy of CI/CD (Continuous Integration
& Continuous Deployment), the practice of creating an automated assembly line
that takes our code from a git push to a fully tested and built artifact without manual
intervention. We will implement a practical CI pipeline using GitHub Actions, creating
a safety net that automatically runs our linter and tests on every change, ensuring that
our codebase is always in a healthy, deployable state.

By the end of this lesson, you will have the skills to manage a complete application stack,
handle configuration like a professional, and automate your workflow, freeing you to focus
on what truly matters: building great software.

Table of Contents

1. Module 1: Docker Compose - The Conductor
e The Need for Orchestration
e Core Concepts: Services, Networks, and Volumes
o Anatomy of a docker-compose.yml File
e Core Compose Commands
2. Module 2: Managing Configuration & Secrets
e The Principle of Decoupling Configuration
o Using .env Files with Docker Compose
3. Module 3: The Philosophy of CI/CD
 Continuous Integration (CI): The Safety Net
« Continuous Delivery vs. Continuous Deployment (CD)
4. Module 4: Implementing a CI Pipeline with GitHub Actions
e Core Concepts of GitHub Actions
o Anatomy of a Workflow File
o Building a Practical CI Pipeline
5. Take-Home Assessment: The Complete DevOps Workflow




Module 1: Docker Compose - The Conductor

The Need for Orchestration Our NestJS API is useless without its partners: a
PostgreSQL database to store data and a Redis server for caching. Starting these
manually requires a series of long docker run commands: docker run --name db -e

POSTGRES_PASSWORD=... -p 5432:5432 -v pgdata:/var/lib/... postgres docker
run --name redis -p 6379:6379 redis docker run --name api -p 3000:3000
--link db:db ... my-api This is complex, hard to remember, and doesn’t guarantee

the services can talk to each other correctly. Docker Compose solves this by using a
declarative YAML file.

Core Concepts: Services, Networks, and Volumes

o Services: A service is the definition of a single container in your application stack.
It defines the image to use, the ports to map, the environment variables to set, and
its relationship to other services.

o Networks: By default, Docker Compose creates a single, private “bridge” network
for all services defined in your docker-compose.yml file. This is a critical feature.
It means your api container can connect to your db container using the simple
hostname db, without needing to know its internal IP address.

e Volumes: Volumes are the preferred mechanism for persisting data. When you
define a named volume in your Compose file (like pgdata), Docker manages the
storage location on the host machine. This is safer and more portable than using a
bind mount (linking to a specific folder path on your host).

Anatomy of a docker-compose.yml File This file is the single source of truth for
your entire application stack’s configuration. * version: Specifies the file format version.
'3.8' is a common, modern choice. * services: The top-level key where all your
container definitions live. * build vs. image: Use build: . for services you build
from a local Dockerfile. Use image: postgres:15-alpine for services that use a pre-
built image from a registry like Docker Hub. * ports: Maps HOST:CONTAINER ports.
* environment: Sets environment variables inside the container. * volumes: Mounts
volumes. named-volume:/path/in/container. * depends_on: Controls the startup
order. api depends on db, so Compose will start the db container first.

Core Compose Commands

o docker-compose up: The main command. It reads your docker-compose.yml,
builds any necessary images, and creates/starts all services.

« docker-compose up -d: The -d (detached) flag is essential for running your stack
in the background.

« docker-compose down: Stops and removes the containers and networks. To also
remove named volumes, you must use the -v flag: docker-compose down -v.

» docker-compose build: Forces a rebuild of your custom images (e.g., after you
change your Dockerfile).




Module 2: Managing Configuration & Secrets

The Principle of Decoupling Configuration A well-architected application adheres
to the “Twelve-Factor App” methodology, a set of best practices for building modern
software. One of its key principles is to store config in the environment. Your codebase
should be the same across all environments (development, staging, production). The only
thing that changes is the configuration, which is injected via environment variables. This
prevents secrets from ever being committed to version control.

Using .env Files with Docker Compose Docker Compose has built-in support for
.env files. When you run docker-compose up, it will automatically look for a file named
.env in the same directory and load its key-value pairs. You can then substitute these
variables into your docker-compose.yml file using the ${VARIABLE_NAME} syntax.

This creates a clean and secure pattern for local development: 1. Define your secrets
in a .env file. 2. Add .env to your .gitignore and .dockerignore files. 3. Create a
.env.example file with placeholder values and commit that to Git so other developers
know what variables are needed.

Module 3: The Philosophy of CI/CD

Continuous Integration (CI): The Safety Net CI is an automated process where,
every time a developer pushes code to a shared repository (e.g., in a pull request), a
dedicated server automatically: 1. Checks out the code. 2. Installs all dependencies. 3.
Runs a series of quality checks (like linting). 4. Runs the entire automated test suite
(unit, integration, E2E). 5. (Optionally) Builds a production artifact, like a Docker image.

If any of these steps fail, the pipeline fails, and the developer is immediately notified. This
prevents broken code from ever being merged into the main branch, keeping it stable and
deployable at all times.

Continuous Delivery vs. Continuous Deployment (CD)

e Continuous Delivery: The CI pipeline runs, and if it succeeds, the application
is automatically deployed to a staging or testing environment. A final, manual
approval step (e.g., a manager clicking a “Deploy to Production” button) is required
to release to customers.

o Continuous Deployment: This is the ultimate goal of automation. If the CI
pipeline and all automated tests succeed, the new version of the application is
automatically deployed to production with no human intervention.

Module 4: Implementing a CI Pipeline with GitHub Actions
Core Concepts of GitHub Actions

o Workflow: The top-level YAML file in .github/workflows/.
o Event: The trigger (e.g., on: push).
o Job: A set of steps that runs on a runner. Jobs can run in parallel.



e Runner: A virtual machine hosted by GitHub that executes your job.

o Step: An individual task. uses: runs a pre-built Action; run: executes a shell
command.

o Action: A reusable piece of code from the GitHub Marketplace or your own
repository. actions/checkout and actions/setup-node are essential.

Anatomy of a Workflow File The YAML file is declarative. You define the “what,”
and GitHub Actions figures out the “how.” The indentation is critical.

Building a Practical CI Pipeline Our CI pipeline for the NestJS app will have steps
for: 1. Checkout: Get the code. 2. Setup Node: Install the correct Node.js version
on the runner. 3. Caching Dependencies: A key optimization. This step caches the
node_modules folder. On subsequent runs, if package-lock.json hasn’'t changed, it
can restore the cache instead of running npm install from scratch, saving a significant
amount of time. 4. Install Dependencies: run: npm ci (using ci instead of install
is a best practice in CI as it’s faster and uses the lock file). 5. Run Linter: run: npm
run lint. 6. Run Tests: run: npm run test.

Take-Home Assessment: The Complete DevOps Workflow

Objective: To demonstrate mastery of Docker Compose and CI/CD by orchestrating
your full application stack and creating an automated testing pipeline.

The Task: You will be given the complete, database-connected NestJS project.

Part 1: Docker Compose Orchestration 1. Create a docker-compose.yml file to
orchestrate three services: api, db (PostgreSQL), and cache (Redis). 2. Configure the db
service to use a named volume to persist its data. 3. Configure all three services to restart
automatically if they fail (restart: always). 4. Create a .env file to store all your secrets
(database credentials, JWT secret). 5. Ensure your docker-compose.yml file reads these
secrets from the environment variables. 6. Update your application’s data source and
cache module configurations to read their credentials from environment variables (e.g.,
process.env.DATABASE_USER). 7. Add a .env.example file to your repository.

Part 2: GitHub Actions CI Pipeline 1. Create a .github/workflows directory
in your project. 2. Inside, create a ci.yml file. 3. Define a workflow that triggers
on push and pull_request events to the main branch. 4. Create a single job named
build-and-test. 5. Add the following steps to the job: * Checkout the code. * Set up
Node.js version 18. * Add a step to cache your node_modules directory based on the
package-lock. json hash. * Install dependencies using npm ci. * Run the linter using
npm run lint. * Run your complete test suite using npm run test.

Submission: Submit your entire updated project, including the docker-compose.yml,
.env.example, and ci.yml files, via a Pull Request to your personal assignments reposi-
tory. GitHub will automatically run your new CI pipeline on the PR. The submission will
only be considered complete if the pipeline passes.



	Month 5, Week 4: The Unabridged Learning Guide
	Introduction: The Automated Assembly Line
	Table of Contents
	Module 1: Docker Compose - The Conductor
	Module 2: Managing Configuration & Secrets
	Module 3: The Philosophy of CI/CD
	Module 4: Implementing a CI Pipeline with GitHub Actions
	Take-Home Assessment: The Complete DevOps Workflow



