Month 5, Week 3: The Unabridged Learning Guide

Introduction: The Universal Shipping Container

Throughout our journey, we have meticulously crafted a professional NestJS application.
It is secure, well-architected, and connected to a database. We have tested its components
in isolation and as a whole. But one critical problem remains, a problem that has plagued
software development for decades: the “it works on my machine” syndrome. An application
that runs perfectly on your laptop can fail spectacularly on a production server due to
subtle differences in the environment.

This week, we solve that problem forever. We will master Docker and the art of
containerization.

A container is a universal shipping container for your software. It packages your application
code along with every single dependency it needs to run—the Node.js runtime, system
libraries, environment variables—into a single, lightweight, and portable unit. This
container will run identically on your laptop, your teammate’s laptop, the testing server,
and the production cloud. It is the ultimate guarantee of consistency.

This lesson will provide a deep, architectural understanding of what containers are and why
they are vastly more efficient than traditional Virtual Machines (VMs). We will start from
the very beginning, installing the Docker engine and mastering the core command-line
tools for managing images and containers.

The heart of this lesson is the Dockerfile. We will learn, line by line, how to write a
blueprint that describes how to build an image for our application. We will then graduate
to a professional, multi-stage Dockerfile, a critical pattern for creating production-
grade images that are both small and secure. By the end of this lesson, you will have the
power to package your NestJS application into a universal container, ready to be shipped
and run anywhere in the world with confidence.

Table of Contents

1. Module 1: The Philosophy of Containerization
o The “Works on My Machine” Problem
o Virtual Machines vs. Containers: A Deep Dive
2. Module 2: The Docker Engine and Core Commands
o Installation and Setup
o Docker’s Architecture: Client, Daemon, and Registry
o Core Commands: run, ps, images, stop, rm
3. Module 3: The Dockerfile - Building Images
o Images vs. Containers: Blueprint vs. Building
o Anatomy of a Dockerfile
o The .dockerignore File
4. Module 4: Production-Grade Dockerfiles
e The Problem with Naive Dockerfiles
o The Multi-Stage Build Pattern
o Dockerfile Best Practices



5. Take-Home Assessment: Full Containerization

Module 1: The Philosophy of Containerization

The “Works on My Machine” Problem This is the single most common and
frustrating source of bugs in collaborative and deployed software. The root cause is
environmental drift: subtle differences between the developer’s machine, the testing
server, and the production server. These can include different operating system versions,
different installed system libraries, different language runtime versions (e.g., Node.js v18
vs. v16), or different environment variables. Docker is designed to eliminate environmental
drift entirely.

Virtual Machines vs. Containers: A Deep Dive

« Virtual Machines (VMs):

— Analogy: Building a complete, separate house for each application.

— Mechanism: A VM hypervisor (like VirtualBox or VMware) emulates an
entire set of physical hardware (CPU, RAM, network card) on top of the host
OS. You then install a full “Guest OS” (e.g., another copy of Linux) on top of
this virtual hardware. Your application and its dependencies run inside this
Guest OS.

— Pros: Extremely strong isolation. The Guest OS is completely separate from
the Host OS.

— Cons: Huge size (gigabytes), slow to boot (minutes), high resource overhead
(each VM needs its own RAM and CPU allocated for its entire OS).

o Containers:

— Analogy: Renting apartments in a large building.

— Mechanism: A container engine (like Docker) runs directly on the host OS.
It packages an application’s code, libraries, and dependencies into an isolated
userspace. All containers on a host share the host OS’s kernel. They do
not need their own guest OS.

— Pros: Extremely lightweight (megabytes), fast to boot (seconds), very low
resource overhead.

— Cons: Weaker isolation than a VM (though very secure for most use cases),
as the kernel is shared.

Module 2: The Docker Engine and Core Commands

Installation and Setup Follow the official guides to install Docker Desktop (for
Mac/Windows) or Docker Engine (for Linux). This provides the core components needed
to build and run containers.

Docker’s Architecture: Client, Daemon, and Registry

« The Docker Daemon (dockerd): A long-running background service that does
all the heavy lifting: building images, running containers, managing networks and
volumes.



o The Docker Client (docker): The command-line tool you interact with. When
you type docker run ..., the client translates this into an API request and sends
it to the Docker Daemon.

o A Docker Registry: A storage system for your Docker images. Docker Hub is the
default public registry, but companies often run their own private registries. docker
pull downloads an image from a registry, and docker push uploads one.

Core Commands

o docker build -t <image-name> .: Builds a new image from the Dockerfile in
the current directory.
« docker images: Lists all images on your local machine.
e docker run [OPTIONS] <image-name>: Creates and starts a new container from
an image.
— -p <host-port>:<container-port>: Maps a port.
— =d: Run in detached mode (in the background).
— --name <container-name>: Give the container a human-readable name.
o docker ps: Lists running containers. docker ps -a lists all containers (running
and stopped).
o docker stop <container-id>: Gracefully stops a running container.
e docker rm <container-id>: Removes a stopped container.
e docker rmi <image-id>: Removes an image.

Module 3: The Dockerfile - Building Images
Images vs. Containers: Blueprint vs. Building

o Image: A read-only template, like a class in OOP or a blueprint for a house. It’s
composed of a series of layers.

o Container: A runnable instance of an image. When you start a container, Docker
creates a thin, writable layer on top of the read-only image layers. This is where
your application’s logs and any temporary files are written.

Anatomy of a Dockerfile A Dockerfile is a script that automates the creation
of an image. Each instruction creates a new layer. * FROM node:18-alpine: Starts
from a pre-built base image. Using alpine variants is a best practice as they are much
smaller. * WORKDIR /app: Sets the current directory inside the container for all subsequent
commands. * COPY package.json .: Copies a file from your local machine into the
WORKDIR of the image. * RUN npm install: Executes a command inside the container
during the build. This layer, with the installed node_modules, will be cached. * EXPOSE
3000: Documents that the application inside the container will listen on this port. It does
not actually open the port. * CMD ["node", "dist/main.js"]: The default command
to execute when the container starts.

The .dockerignore File This file is crucial for both security and performance. By ex-
cluding files like .git, .env, and node_modules from the build context, you prevent secrets
from being leaked into your image and you avoid sending your huge local node_modules
folder to the Docker daemon, which speeds up the build.



Module 4: Production-Grade Dockerfiles

The Problem with Naive Dockerfiles A simple, single-stage Dockerfile results in
a bloated and insecure image. For a TypeScript project, it would contain: * The entire
node_modules folder, including all devDependencies. * Your source .ts files. * The
TypeScript compiler itself. None of this is needed to simply run the compiled JavaScript
application.

The Multi-Stage Build Pattern This pattern is the professional standard for compiled
languages. You use two or more FROM instructions. * Stage 1: The builder stage.
You use a full Node.js image, copy all your source code, install all dependencies (including
devDependencies), and run your build command (npm run build). This stage contains
all your build tools and intermediate files. * Stage 2: The final production stage.
You start from a clean, lightweight base image (like node:18-alpine). You install
only your production dependencies (npm install --omit=dev). Then, you use COPY
--from=builder /app/dist ./dist to copy only the compiled JavaScript from the
builder stage.

The result is a minimal, clean image that contains only what is absolutely necessary to
run your application.

Dockerfile Best Practices

» Use a specific base image tag: FROM node:18.17.0-alpine is better than FROM
node:18-alpine. This makes your builds more deterministic.

o Leverage layer caching: Order your Dockerfile instructions from least-
frequently-changing to most-frequently-changing. COPY package. json should
always come before COPY .

« Run as a non-root user: For security, create a dedicated, unprivileged user inside
the container and run your application as that user.

o Minimize layers: Each RUN instruction creates a new layer. Chain related RUN
commands together with && to reduce the number of layers.

Take-Home Assessment: Full Containerization

Objective: To demonstrate mastery of Docker by writing a production-grade, multi-stage
Dockerfile for your NestJS application.

The Task: You will be given the complete, database-connected NestJS project. Your
task is to containerize it.

1. Create the Dockerfile: * Create a Dockerfile in the root of your project. *

Implement a multi-stage build. * The builder stage should install all dependencies
and run npm run build. * The final stage should start from a clean node:18-alpine
image, install only production dependencies, and copy the compiled dist folder and
the node_modules from the builder. * Ensure your CMD runs the application using node
dist/main.



2. Create the .dockerignore file: * Make sure you ignore node_modules, dist, .git,
.env, and any other local files.

3. Build and Run: * Build your image: docker build -t my-nest-api . * Run your
container, making sure to map the port: docker run -p 3000:3000 my-nest-api

4. Test: * Use Postman to verify that your containerized application is running and all
endpoints are working as expected.

Submission: Submit your updated project, including the new Dockerfile and
.dockerignore files, via a Pull Request to your personal assignments repository.



	Month 5, Week 3: The Unabridged Learning Guide
	Introduction: The Universal Shipping Container
	Table of Contents
	Module 1: The Philosophy of Containerization
	Module 2: The Docker Engine and Core Commands
	Module 3: The Dockerfile - Building Images
	Module 4: Production-Grade Dockerfiles
	Take-Home Assessment: Full Containerization



