Month 4, Week 4: The Unabridged Learning Guide

Introduction: The Architect’s Safety Net

So far, we have architected and built a powerful, professional-grade API using NestJS. It
is well-structured, secure, and connected to a persistent database. But how do we know it
is correct? How do we ensure that when we add a new feature or refactor a complex piece
of logic, we haven’t inadvertently broken something else?

The answer is automated testing.

Testing is not a chore to be done after the “real” coding is finished. It is an integral part
of the development process that provides a critical safety net. A robust suite of automated
tests gives you and your team the confidence to move fast, refactor aggressively, and build
resilient systems. It is the single most important discipline that separates a professional
architect from an amateur coder.

This week, we will master the art and science of software testing within the NestJS
ecosystem. We will begin with the architectural philosophy of the Testing Pyramid,
understanding the different layers of testing and their respective trade-offs.

We will then take a deep dive into each layer. First, we will master Unit Testing with
Jest, learning how to test the smallest pieces of our application in complete isolation by
mocking their dependencies. Next, we will explore Integration Testing, where we test
how our components collaborate, often with a real test database. Finally, we will learn
about End-to-End (E2E) Testing with Supertest, which allows us to test our entire
application from the outside, just as a client would.

By the end of this lesson, you will have the skills to build not just a functional application,
but a correct, reliable, and maintainable one.

Table of Contents

1. Module 1: The Philosophy of Software Testing
o The Cost of a Bug
o The Testing Pyramid: A Strategic Blueprint
2. Module 2: Unit Testing Deep Dive
o The AAA Pattern (Arrange, Act, Assert)
o Jest: The Testing Framework
o Test Doubles: Mocks, Stubs, and Spies
o Unit Testing a NestJS Service
3. Module 3: Integration Testing in Practice
e The Goal: Testing Collaborations
o Setting Up a Test Database Environment
o Writing a Service Integration Test
4. Module 4: End-to-End (E2E) Testing
o Testing the System as a Black Box
o Using Supertest for HI'TP Assertions
5. Take-Home Assessment: The Test-Driven books API



Module 1: The Philosophy of Software Testing

The Cost of a Bug A bug is not just an error. It has a cost, and that cost grows
exponentially the later it is discovered in the development lifecycle. * Cost Level 1
(Development): A bug caught by the developer as they are writing the code, or by
a unit test, costs seconds or minutes to fix. * Cost Level 10 (CI/CD Pipeline): A
bug that breaks the build after being pushed to Git costs the developer and potentially
their team hours of productivity. * Cost Level 100 (QA /Staging): A bug found by a
Quality Assurance tester costs days of work, involving bug reports, re-prioritization, and
re-deployment. * Cost Level 10004 (Production): A bug that reaches the customer
is a catastrophe. It can cause data corruption, financial loss, security breaches, and
irreparable damage to your company’s reputation.

Our goal as architects is to catch bugs at the lowest possible cost level. Automated testing
is our primary tool for achieving this.

The Testing Pyramid: A Strategic Blueprint The Testing Pyramid is a model
that helps us think about the different types of tests and how many of each we should
have.

« Base - Unit Tests (70-80% of tests):
— Scope: Tests a single, isolated function or class.
— Speed: Blazing fast (milliseconds).
— Cost: Very cheap to write and maintain.
— Confidence: High confidence in individual components, but low confidence in
the system as a whole.
o Middle - Integration Tests (15-25% of tests):
— Scope: Tests how two or more components work together (e.g., a controller, a
service, and a database).
— Speed: Slower (can take seconds).
— Cost: More expensive to write and set up (requires a database, etc.).
— Confidence: High confidence that the core components of your application
are wired together correctly.
+ Peak - End-to-End (E2E) Tests (5-10% of tests):
— Scope: Tests the entire application from the outside, via its public interface
(e.g., making real HTTP requests).
— Speed: Very slow (can take many seconds or minutes).
— Cost: Very expensive and can be “brittle” (prone to breaking on small UI or
API changes).
— Confidence: The highest level of confidence that the system is working from
a user’s perspective.

A healthy project has a large base of unit tests, a smaller layer of integration tests, and a
very small number of critical E2E tests for the most important user flows.




Module 2: Unit Testing Deep Dive
The AAA Pattern (Arrange, Act, Assert)

o Arrange: Set up all the preconditions for your test. This includes creating mock
data, setting up mock functions, and instantiating the class you are about to test.

o Act: Execute the single method or function you are testing.

o Assert: Make a claim about the outcome. Check that the function returned the
correct value or that it called another function with the correct arguments.

Jest: The Testing Framework

e describe(name, fn): A test suite.

o it(name, fn): An individual test case. The name should read like a sentence, e.g.,
it('should return a user when a valid ID is provided').

» beforeEach(fn) / afterEach(fn): Hooks that run before or after each it block.

o beforeAll(fn) / afterAll(fn): Hooks that run once before or after all it blocks
in a describe block.

o expect(value): The starting point of an assertion.

o Matchers: .toBe(value) (for primitives), .toEqual (object) (for objects/arrays),
.toHaveBeenCalled(), .toHaveBeenCalledWith(...), .toThrow().

Test Doubles: Mocks, Stubs, and Spies “Mocking” is a general term, but there are
more precise definitions for these “test doubles.” * Stub: A dummy object that returns
pre-defined, “canned” answers to function calls. Its purpose is to provide the data your
unit needs to run. * Spy: A wrapper around a real function that allows you to “spy” on
it, recording how many times it was called and with what arguments, without changing
its original behavior. * Mock: A more complex object that combines the behaviors of
stubs and spies. You can stub its methods to return specific values and have expectations
about how those methods should be called. jest.fn() creates a powerful mock function.

Unit Testing a NestJS Service The goal is to test the UsersService without touching
a real database. We must mock the UserRepository.

1. Create the Mock: Create a plain JavaScript object that has the same method
names as the Repository, using jest.fn() for each one. You can configure what
these mock functions should return for a specific test.

2. Create the Testing Module: Use Test.createTestingModule({...3}).

3. Provide the Mock: In the providers array, you override the real repository. You
use getRepositoryToken(User) to get the correct injection token and then use
useValue to provide your mock object.

4. Get the Service Instance: After compiling the module, you get the instance of the
UsersService with module.get<UsersService>(UsersService). This instance
will have been created by the testing container with your mock repository injected
into its constructor.

5. Write the Tests: Use the AAA pattern. In the “Arrange” step, you might configure
your mock’s return value (e.g., mockRepository.findOneBy.mockResolvedValue (testUser)).
In the “Assert” step, you can check both the return value of the service method and
whether the mock repository method was called correctly.



Module 3: Integration Testing in Practice

The Goal: Testing Collaborations An integration test answers the question:
“Does my UsersService correctly talk to a real PostgreSQL database?” or “Does my
UsersController correctly call my UsersService?” We are testing the “seams” between
our components.

Setting Up a Test Database Environment

1. Create a Separate Database: Create a new PostgreSQL database specifically for
testing (e.g., my_app_test).

2. Use Environment Variables: Your database connection logic should read its
configuration from environment variables. You can then have a .env.test file.

3. Test Script in package. json: Your test script can be modified to use the test
environment variables: "test": "NODE_ENV=test jest'.

4. Clean State is Critical: Your tests must be independent. One test should not affect
another. Before each test (or test suite), you must ensure your tables are clean. You
can achieve this in a beforeEach hook by running await repository.clear() ;.

Writing a Service Integration Test The setup is different from a unit test. You will
typically import your entire AppModule into the TestingModule. You do not provide
mock repositories. The testing module will build the full application with a real database
connection (to your test database). The test then calls the service method and asserts
that the data returned is correct by checking the real database.

Module 4: End-to-End (E2E) Testing

Testing the System as a Black Box An E2E test knows nothing about your internal
architecture. It doesn’t know what a controller or a service is. It only knows that it can
send an HTTP request to POST /users and should get a 201 Created response back.

Using Supertest for HTTP Assertions The NestJS E2E test setup uses Supertest.
* request (app.getHttpServer ()): Gets the running application server to make requests
against. * .get('/path'), .post('/path'), etc.: The HTTP verb. * .send(data):
The request body for POST or PATCH. * .set('Header', 'value'): Sets request head-
ers. * .expect(statusCode): Asserts the HTTP status code of the response. *
.expect (body): Can be used to assert the exact response body.

An E2E test should verify the entire user flow. For example, a POST test should be followed
by a GET test to the new resource’s URL to ensure it was actually created.

Take-Home Assessment: The Test-Driven books API

Objective: To demonstrate a comprehensive understanding of all three testing method-
ologies by writing a robust test suite for an existing resource.

4



The Task: You will be given the complete, database-connected NestJS project with the
books resource. Your task is to add a full suite of tests.

1. Unit Tests (books.service.spec.ts): * Write comprehensive unit tests for the
BooksService. * Create a mock booksRepository using jest.fn(). * Write tests for
the “happy path” of every method (create, findA11l, findOne, update, remove). * Write
tests for the “unhappy path,” specifically testing that findOne and update correctly throw
a NotFoundException when given a non-existent ID. * Aim for 100% unit test coverage
for the service file.

2. Integration Test (books.integration-spec.ts): * Create a new test file for an
integration test. * Set up a test module that connects to a real test database. * Write an
integration test for the create and findOne methods working together. Your test should
call service.create(), then call service.findOne () with the new ID, and assert that
the returned data is correct. Use a beforeEach hook to clean the books table.

3. E2E Test (books.e2e-spec.ts): * Create a new E2E test file. * Write a test for
the POST /books endpoint. Use Supertest to send a request with a valid DTO and assert
that the response status is 201 and the response body matches the data sent. * Bonus:
Write a test for a POST /books request with invalid data (e.g., a missing title) and assert
that the response status is 400 Bad Request.

Submission: Submit your entire updated project, including all new test files, via a Pull
Request to your personal assignments repository.



	Month 4, Week 4: The Unabridged Learning Guide
	Introduction: The Architect’s Safety Net
	Table of Contents
	Module 1: The Philosophy of Software Testing
	Module 2: Unit Testing Deep Dive
	Module 3: Integration Testing in Practice
	Module 4: End-to-End (E2E) Testing
	Take-Home Assessment: The Test-Driven books API



