Month 4, Week 2: The Unabridged Learning Guide

Introduction: From Manual Labor to an Automated Assembly
Line

Last week, we took our first step into the world of professional, opinionated frameworks
by scaffolding a basic NestJS application. We learned about the three core architectural
pillars—Modules, Controllers, and Providers—that form the blueprint of every NestJS
project. We now have a structure, but it is an empty one.

This week, we bring that structure to life. We will move from a simple scaffold to a robust,
production-ready API by mastering the patterns that make NestJS so powerful.

First, we will take a deep dive into Dependency Injection (DI). We will move
beyond the basic concept to understand provider scopes and the immense power of custom
providers, learning how NestJS manages the lifecycle of our services and dependencies.

Next, we will tackle one of the most critical aspects of API development: input validation.
We will learn how to define the public “contract” of our API using Data Transfer Objects
(DTOs) and leverage the class-validator and class-transformer libraries to create
a robust, automatic validation layer. This is how we protect our application from bad
data and ensure stability.

Finally, we will put all this theory into practice. We will embark on a complete rebuild
of the CRUD API we have been working on, this time using our ORM (TypeORM)
within the NestJS framework. By comparing the “before” (our manual Express/TypeORM
implementation) and the “after” (the clean, DI-powered NestJS implementation), you will
gain a profound appreciation for the power, safety, and productivity that a professional-
grade framework provides.

Table of Contents

1. Module 1: Dependency Injection Deep Dive
» Recap: Inversion of Control (IoC)
o Provider Scopes: Singleton, Request, and Transient
o Custom Providers for Configuration and More
2. Module 2: DTOs & Robust Validation
o The API Contract: Why DTOs are Essential
o Decorator-Based Validation with class-validator
o Automating Validation with the ValidationPipe
3. Module 3: Rebuilding the CRUD API the NestJS Way
o Injecting a TypeORM Repository
o Implementing the Service Logic
o Connecting the Controller
4. Take-Home Assessment: The Fully-Featured books API

Module 1: Dependency Injection Deep Dive

Recap: Inversion of Control (IoC) Inversion of Control is the design principle
where the control of object creation and linking is passed from the application code to
the framework. Dependency Injection is the pattern used to implement this principle.
Instead of new UserService() inside our controller, the NestJS IoC container reads the
constructor’s type hints and provides (injects) the necessary instance.

Provider Scopes: Singleton, Request, and Transient

« Scope.DEFAULT (Singleton): This is the default. NestJS creates one instance
of your UserService and shares that exact same instance every time it’s injected
anywhere in your application. This is highly memory-efficient and fast.

e Scope.REQUEST: When a provider is request-scoped, a brand new instance is
created for every single incoming HTTP request, and it is destroyed once the request
is complete. This is useful for storing request-specific state (like a user’s identity
from a token or a unique request ID for tracing) without that state leaking between
different users’ requests. It has a higher performance cost due to the constant object
creation.

o Scope.TRANSIENT: A transient provider is never shared. Every single class that
injects a transient provider gets its own brand new, private instance.

Custom Providers for Configuration and More The DI system is not limited to
class instances. You can inject any value you want by creating a custom provider. This is
commonly used for configuration objects.

// A file for comnstants
// src/constants.ts
export const API_CONFIG = 'API_ CONFIG';

// In your module file
// src/config/config.module. ts
@Module ({
providers: [
{
provide: API_CONFIG, // Use the constant as a safe token
useValue: { // The walue to be injected
apiKey: process.env.API KEY,
timeout: 5000,
.
},
1,
exports: [API_CONFIG], // Ezport the provider so other modules can use it
D
export class ConfigModule {}

// In a service in another module that imports ConfigModule
import { Inject } from 'G@nestjs/common';
import { API CONFIG } from '../constants';

/)
constructor(@Inject (API_CONFIG) private config: { apiKey: string, timeout: number })
// this.config.apiKey ts now available

b

Module 2: DTOs & Robust Validation

The API Contract: Why DTOs are Essential A Data Transfer Object is a class
whose sole purpose is to define the shape of data being sent over the network. It acts as a
formal contract. * For POST / PATCH requests: It defines what the req.body should
look like. * For GET responses: It can define the shape of the data being sent back,
allowing you to separate your public API response from your internal database entity. For
example, your User entity has a passwordHash property, but your UserDto would not,
preventing you from ever accidentally leaking it.

Decorator-Based Validation with class-validator This library provides a huge
set of decorators you can place on the properties of your DTO classes.

// src/users/dto/create-user.dto.ts
import { IsEmail, IsNotEmpty, IsString, MinLength, MaxLength, IsOptional, IsEnum } fr

enum UserRole {
ADMIN = 'admin',
EDITOR = 'editor',
VIEWER = 'viewer',

}

export class CreateUserDto {
@IsString()
@IsNotEmpty ()
@MinLength(3)
@MaxLength (50)

name: string;

@IsEmail ()
@IsNotEmpty ()
email: string;

@IsEnum(UserRole)
@IsOptional() // This field can be omitted
role?: UserRole = UserRole.VIEWER; // We can even provide o default

Automating Validation with the ValidationPipe A Pipe in NestJS is a class
decorated with @Injectable() that implements the PipeTransform interface. It sits
between the incoming request and your controller method. The built-in ValidationPipe
is a powerful pipe that: 1. Takes the plain JavaScript object from the request body.

2. Uses class-transformer to convert it into an instance of your DTO class. 3. Uses
class-validator to run all the validation decorators you defined on that class. 4. If
validation fails, it automatically throws an exception, which NestJS formats into a 400 Bad
Request response with a detailed list of the validation errors. 5. If validation succeeds, it
passes the now-validated and transformed DTO instance to your controller method.

Module 3: Rebuilding the CRUD API the NestJS Way

Injecting a TypeORM Repository To connect our NestJS module with our
TypeORM entities, we use the TypeOrmModule. 1. In the root AppModule
you import TypeOrmModule.forRoot({...}) with your main database connec-
tion options. 2. In each feature module (e.g., UsersModule), you import
TypeOrmModule.forFeature([User, ...]). This tells TypeORM, “The reposito-
ries for these specific entities should be made available for injection within this
module” 3. In your service (UsersService), you inject the repository using the
@InjectRepository(User) decorator in the constructor.

Implementing the Service Logic The service is where the database interaction
happens. The code becomes a clean translation of our intent into TypeORM repository
methods.

@Injectable()
export class UsersService {
constructor(
@InjectRepository(User)
private usersRepository: Repository<User>,

) {3

create(createUserDto: CreateUserDto): Promise<User> {
const newUser = this.usersRepository.create(createUserDto);
return this.usersRepository.save(newUser);

3

findA11(): Promise<User[]> {
return this.usersRepository.find(Q);

3

async findOne(id: number): Promise<User> {
const user = await this.usersRepository.findOneBy({ id });
if (luser) A
throw new NotFoundException(User with ID ${id} not found™);
}

return user;

}

// ... and so on for update and remove

}

Notice how the service now throws specific NestJS exceptions (NotFoundException),

4

which the framework will automatically translate into the correct HTTP status codes
(404).

Connecting the Controller The controller becomes incredibly lean. Its only job is to
define the route, apply parameter decorators to extract data, and call the corresponding
service method. It contains no business logic itself.

@Controller('users')
export class UsersController {
constructor(private readonly usersService: UsersService) {}

QPost ()
create(@Body() createUserDto: CreateUserDto) {
return this.usersService.create(createUserDto) ;

3

QGet ()
findA11() {
return this.usersService.findAl11();

3

@Get (':id")

findOne(@Param('id') id: string) {
return this.usersService.findOne(+id);

}

/7 ...

Take-Home Assessment: The Fully-Featured books API

Objective: To demonstrate mastery of NestJS architecture by building a new, fully-
validated CRUD resource from scratch and connecting it to the database via TypeORM.

The Task: You will be given the NestJS project with the users resource already built.
Your task is to add a complete, production-ready books API.

1. Generate the Resource: * Use the NestJS CLI to generate a books resource: nest
g resource books.

2. Create the Book Entity (src/books/entities/book.entity.ts): * Define a
Book entity that maps to a books table. * It should have properties for id (primary key),
title (string), author (string), and publicationYear (number). Use the appropriate
TypeORM decorators.

3. Update the BooksModule: * Import TypeOrmModule.forFeature([Book]) to make
the Book repository available for injection.

4. Create the DTOs: * In src/books/dto/create-book.dto.ts, add properties
for title, author, and publicationYear. Add class-validator decorators to ensure
title and author are non-empty strings and publicationYear is a positive integer. *

In src/books/dto/update-book.dto.ts, do the same, but make all properties optional
using @IsOptional().

5. Implement the BooksService (src/books/books.service.ts): * Inject the
BookRepository. * Implement all five business logic methods (create, findAll, findOne,
update, remove) using the repository to interact with the database. Ensure you handle
the “not found” case gracefully by throwing a NotFoundException.

6. Update the BooksController: * Ensure all five controller methods are correctly
implemented, calling their corresponding service methods. * Make sure the parameter
decorators (@Param, @Body) are correctly typed with your DTOs.

7. Test Thoroughly: * With the ValidationPipe enabled globally, use Postman to
test every endpoint. * Test creating a book with valid data. * Test creating a book with
invalid data (e.g., missing title, non-numeric year) and verify that you receive a 400 Bad
Request with detailed error messages. * Test all other GET, PATCH, and DELETE
endpoints.

Submission: Submit your entire updated project via a Pull Request to your personal
assignments repository.

	Month 4, Week 2: The Unabridged Learning Guide
	Introduction: From Manual Labor to an Automated Assembly Line
	Table of Contents
	Module 1: Dependency Injection Deep Dive
	Module 2: DTOs & Robust Validation
	Module 3: Rebuilding the CRUD API the NestJS Way
	Take-Home Assessment: The Fully-Featured books API

