Month 3, Week 3: The Unabridged Learning Guide

Introduction: The Power of Abstraction

For the past two weeks, we have mastered the foundational language of data: SQL. We
have learned to architect schemas with DDL and manipulate data with DML. We have
built a functioning Express.js API that communicates directly with a powerful PostgreSQL
database. In doing so, you have felt the friction of the two worlds: the object-oriented
world of JavaScript and the relational, tabular world of SQL. You have manually written
SQL query strings, carefully managed placeholders to prevent injection, and written
boilerplate code to map the rows from a database result back into usable JavaScript
objects.

This week, we introduce the next critical layer of a professional backend architect’s toolkit:
the Object-Relational Mapper (ORM).

An ORM is a powerful abstraction layer that acts as a translator. It allows you to stop
thinking in terms of SQL strings and start thinking purely in terms of the JavaScript
objects and classes you are already familiar with. The ORM takes on the tedious and
error-prone task of writing the SQL for you.

We will begin by taking a deep dive into the core problem that ORMs solve: the “Object-
Relational Impedance Mismatch.” We will then introduce TypeORM, a powerful, mature
ORM designed for the modern TypeScript/JavaScript ecosystem and the foundational
data layer for the NestJS framework we will master later.

The core of this lesson will be a practical, step-by-step refactoring of the Express.js
API we connected to PostgreSQL last week. We will replace every raw SQL query with a
clean, type-safe, and expressive ORM method call. By the end of this lesson, you will
not only understand what an ORM is but will have experienced firsthand the dramatic
improvement in developer productivity, code clarity, and safety that it provides.

Table of Contents

1. Module 1: The Problem ORMs Solve
o The Object-Relational Impedance Mismatch: A Deeper Look
e The Pros and Cons of Using an ORM
2. Module 2: Introduction to TypeORM
o Core Concepts: Data Source, Entity, Repository
« Setting Up Your Project with TypeORM
o Defining Entities with Decorators
3. Module 3: Refactoring the API with TypeORM
o Initializing the Data Source and Getting Repositories
o Refactoring CRUD Operations: Before and After
4. Take-Home Assessment: Refactoring the posts API with Relationships

Module 1: The Problem ORMs Solve

The Object-Relational Impedance Mismatch: A Deeper Look This term de-
scribes the inherent difficulties that arise when you try to map data from a relational
database (which stores data in flat, two-dimensional tables) to an object-oriented pro-
gramming language (which uses complex, nested objects with methods and inheritance).

The mismatch occurs in several key areas: * The Granularity Problem: You might
have an Address class in your code, but in the database, it’s stored as five separate
columns (street, city, state, zip, country) on the users table. The ORM handles
mapping these columns to a single nested object. * The Inheritance Problem: SQL
databases have no native concept of inheritance. If you have Admin and Viewer classes
that both inherit from a User class in your code, how do you represent that in tables?
ORMs provide strategies to handle this (e.g., single table inheritance). * The Identity
Problem: In JavaScript, two objects are only equal if they are the exact same object in
memory (objl === obj2). In a database, two rows are considered “equal” if they have
the same primary key. An ORM’s “identity map” pattern helps resolve this, ensuring
that if you fetch the user with ID 1 twice, you get back a reference to the same user
object in your application. * The Association Problem: In JavaScript, you might
have a user.posts property that is an array of Post objects. In SQL, this relationship is
represented by a user_id foreign key on the posts table. The ORM’s job is to traverse
this relationship for you, allowing you to seamlessly access user.posts while it generates
the necessary JOIN query behind the scenes.

The Pros and Cons of Using an ORM A senior architect understands that every
tool involves trade-offs.

Pros (The Advantages): * Increased Productivity: You write less code. Standard
CRUD operations become one-line method calls instead of multi-line SQL statements and
manual mapping. * Database Abstraction: A well-written application using an ORM
can, in theory, switch its underlying database (e.g., from PostgreSQL to MySQL) with
minimal code changes. The ORM handles the differences in SQL syntax. * Improved
Security: ORMs use parameterized queries by default, virtually eliminating the risk of
SQL injection, one of the most common web vulnerabilities. * Leverages the Language:
You get to think and work in JavaScript/TypeScript. Features like async/await and
type safety integrate seamlessly.

Cons (The Disadvantages): * The “Leaky” Abstraction: To use an ORM effectively,
you still need to understand SQL. When a query is slow, you need to be able to “look
under the hood” at the SQL the ORM is generating to debug and optimize it. * Potential
for Inefficient Queries: An ORM might generate a more complex or less performant
query than one you could write by hand for a specific, complex task. * Learning Curve:
ORMs are powerful tools with their own APIs, conventions, and complexities that you
need to learn. * The “N+1” Problem: A common performance pitfall where fetching
a list of items (e.g., 10 posts) and their related items (e.g., the author for each post)
results in 1 query to get the posts and then N (10) additional queries to get each author
individually, instead of a single, efficient JOIN. Modern ORMs have features (like “eager
loading”) to solve this, but you need to know how to use them.

Module 2: Introduction to TypeORM
Core Concepts: Data Source, Entity, Repository

o Data Source: This is the central configuration object. It’s where you define your
database type (postgres), connection credentials, and tell TypeORM where to find
your entity files. You initialize this once when your application starts.

o Emtity: An entity is a class that is decorated to map to a database table. It is the
blueprint that connects your object-oriented world to your relational world.

» Repository: A repository provides a collection of methods for a single entity. You
get a repository from your data source (e.g., AppDataSource.getRepository (User)).
This userRepository object will have methods like .find(), .findOneBy(),
.save(), .delete(), etc., that are specifically for interacting with the users table.
This is an implementation of the “Data Mapper” pattern, which keeps your data
access logic separate from your business logic objects.

Setting Up Your Project with TypeORM

1. Installation: npm install typeorm reflect-metadata pg
e typeorm: The main library.
o reflect-metadata: A required dependency that allows TypeORM to work
with decorators.
e pg: The PostgreSQL driver that TypeORM uses under the hood.

2. Configuration (db/data-source. js): Create a central file to define and export
your DataSource. It’s critical to import reflect-metadata at the very top of your
application’s entry point.

3. Initialization (app.js): Before you start your Express server, you must

initialize the data source. This is an async operation. javascript
AppDataSource.initialize() .then(() => { console.log("Data
Source has been initialized!"); // now you can start

your express app 19) .catch((err) => { console.error (
during Data Source initialization", err); B;

Defining Entities with Decorators Decorators are special functions that start with @
and provide metadata about a class or property. * @Entity('tableName'): Placed above
a class to mark it as an entity and map it to a table. * @PrimaryGeneratedColumn():
Marks a property as the primary key and configures it to be auto-generated by the
database (like SERIAL). * @Column(): Marks a property as a regular column. You
can pass options to define the data type, length, uniqueness, nullability, etc. (e.g.,
@Column({ type: 'varchar', length: 50, unique: true, nullable: false })).
* @CreateDateColumn() & @UpdateDateColumn(): Special decorators for columns that
should automatically be populated with the creation or last update timestamp.

Module 3: Refactoring the API with TypeORM

Initializing the Data Source and Getting Repositories Once the AppDataSource
is initialized, you can get a repository for any entity in any controller or service file.

const { AppDataSource } = require('../db/data-source');
const User = require('../entities/User');

const userRepository = AppDataSource.getRepository(User);

Refactoring CRUD Operations: Before and After The goal is to replace every
raw db.query() call with a clean, type-safe repository method.

« Read (GET /users):
— Before: const { rows } = await db.query('SELECT * FROM users');
— After: const users = await userRepository.find();

« Read One (GET /users/:id):

— Before: const { rows } = await db.query('SELECT * FROM users
WHERE id = $1', [req.params.id]);

— After: const user = await userRepository.findOneBy({ id: parselnt(req.params.
3

Create (POST /users):

— Before: Manually building an INSERT string.

— After: javascript const newUser = userRepository.create(req.body);
// Create a new entity instance const savedUser = await
userRepository.save(newUser); // Persist it

Update (PATCH /users/:id):

— Before: Manually building an UPDATE string.

— After: “‘javascript const id = parselnt(req.params.id); const user = await
userRepository.findOneBy({ id }); if ('user) { /* handle not found */ }

// Merge the changes from req.body into the found user entity userReposi-
tory.merge(user, req.body);
const updatedUser = await userRepository.save(user); “Thesavemethod is
smart: because theuserobject already has anid, TypeORM knows to
perform anUPDATEinstead of anINSERT"

o Delete (DELETE /users/:id):
— Before: await db.query('DELETE FROM users WHERE id = $1', [id]);
— After: const deleteResult = await userRepository.delete(req.params.id);

Take-Home Assessment: Refactoring the posts API with Relationships

Objective: To demonstrate mastery of ORM principles by refactoring a resource and
defining its relationship to another.

The Task: You will be given the Express project with the users resource already
refactored to use TypeORM. Your task is to refactor the posts resource and establish
the relationship between Posts and Users.

1. Create the Post Entity: * Create a entities/Post.js file. * Define a Post
class with @Entity('posts'). * Add columns for id, title, and content using the
appropriate decorators.

2. Define the Relationship: * In your Post entity, you need to define the relationship to
the User entity. A post is written by one user. Many posts can be written by the same user.

This is a Many-to-One relationship. javascript // In entities/Post.js
// ... other columns @ManyToOne(() => User, (user) => user.posts)
user; * In your User entity, you must define the other side of the relationship: a user
can have many posts. This is a One-to-Many relationship. javascript //
In entities/User. js // ... other columns @0neToMany (() => Post,
(post) => post.user) posts;

3. Refactor the postController.js: * Get the postRepository. * Rewrite all five
controller functions (getAl1lPosts, getPostByld, createPost, updatePost, deletePost)
to use the postRepository methods instead of raw SQL. * For createPost, you will
need to associate the new post with a user. The request body might contain a userId.
You will create the post like this: postRepository.create({ title: req.body.title,
content: req.body.content, user: { id: req.body.userId } }).

4. Test: * Use Postman to test all five CRUD endpoints for your /posts resource.

Submission: Submit your entire refactored project via a Pull Request to your personal
assignments repository.

	Month 3, Week 3: The Unabridged Learning Guide
	Introduction: The Power of Abstraction
	Table of Contents
	Module 1: The Problem ORMs Solve
	Module 2: Introduction to TypeORM
	Module 3: Refactoring the API with TypeORM
	Take-Home Assessment: Refactoring the posts API with Relationships

