
Month 3, Week 2: The Unabridged Learning Guide

Introduction: The Permanent Memory
In our last lesson, we built the architectural blueprint for our application’s data using
SQL’s Data Definition Language (DDL). We now have a well-structured, relational schema
waiting in our PostgreSQL database. However, a blueprint is not a building. Our Express
application still lives in a world of temporary, in-memory arrays. It has no connection to
this permanent memory we have so carefully designed.

This week, we build the bridge. We will connect our application to its database.

First, we will take a deep dive into Advanced SQL. We will move beyond simple SELECT
statements and master the powerful tools that relational databases offer for querying
complex, interconnected data. We will explore JOINs to combine data from multiple tables,
GROUP BY and aggregate functions to create powerful summary reports, and subqueries
to handle complex logical conditions.

Second, we will take on the critical task of integrating our Express.js application
with PostgreSQL. We will learn how to use the pg database driver, understand the
non-negotiable importance of connection pooling for performance, and tackle the #1
security threat for database-driven applications: SQL Injection. We will learn why
parameterized queries are the only acceptable way to interact with a database.

Finally, we will refactor our entire in-memory CRUD API, replacing every array method
with a robust, secure, and persistent SQL query. By the end of this lesson, your application
will have a permanent memory, and you will have the skills to architect a true, data-driven
backend service.

Table of Contents

1. Module 1: Advanced SQL - The Art of the Query
• The Power of Relationships: A JOIN Deep Dive
• Aggregating Data: GROUP BY & Aggregate Functions
• Filtering Groups with HAVING
• Subqueries: Queries within Queries
• Logical Order of Operations in a SELECT Statement

2. Module 2: Integrating Express.js with PostgreSQL
• The Database Driver (pg) & Connection Pooling
• The #1 Security Threat: SQL Injection
• The Only Solution: Parameterized Queries
• Refactoring the CRUD API: Step-by-Step

3. Take-Home Assessment: Refactoring the posts API

Module 1: Advanced SQL - The Art of the Query

The Power of Relationships: A JOIN Deep Dive

1



• INNER JOIN: The most common join. It returns only the rows where there is a
match in both tables specified in the ON condition. If an author has no books, that
author will not appear in the result of an inner join between authors and books.

• LEFT JOIN (or LEFT OUTER JOIN): This returns all rows from the “left” table (the
first table mentioned) and the matching rows from the “right” table. If a row in
the left table has no match in the right table, the columns from the right table will
be filled with NULL. This is extremely useful for finding things that don’t have a
corresponding entry in another table (e.g., “find all users who have never written a
post”).

• RIGHT JOIN (or RIGHT OUTER JOIN): The inverse of a LEFT JOIN. It returns all
rows from the “right” table and the matching rows from the “left” table. NULL is
used for non-matches from the left side. In practice, RIGHT JOIN is rarely used; you
can almost always rewrite the query as a LEFT JOIN by swapping the table order,
which is often more intuitive to read.

• FULL OUTER JOIN: This returns all rows from both tables. If there is a match, the
rows are combined. If a row in either table has no match in the other, it is still
included, and the columns from the other table are filled with NULL.

Aggregating Data: GROUP BY & Aggregate Functions The GROUP BY clause is
a powerful tool for creating summary reports. It collapses multiple rows into a single
summary row based on the values in the specified column(s). It is almost always used
with an aggregate function that performs a calculation on the group.

• COUNT(): Counts the number of rows in the group. COUNT(*) counts all rows, while
COUNT(column) counts non-null values in that column.

• SUM(): Calculates the total sum of a numeric column.
• AVG(): Calculates the average value of a numeric column.
• MAX() / MIN(): Finds the maximum or minimum value in the group.

Example: E-commerce Report “For each product category, find the number of
products in that category and the average price of a product in that category.”

SELECT
category,
COUNT(*) AS number_of_products,
AVG(price) AS average_price

FROM
products

GROUP BY
category;

Filtering Groups with HAVING The HAVING clause is a filter, just like WHERE, but it
operates on the results of an aggregation. * WHERE is processed before GROUP BY and
filters individual rows. * HAVING is processed after GROUP BY and filters the resulting
groups.

Example: “Show me only the product categories that have more than 10 products.”

SELECT
category,

2



COUNT(*) AS number_of_products
FROM

products
GROUP BY

category
HAVING

COUNT(*) > 10;

You cannot use WHERE COUNT(*) > 10 because WHERE does not know about the results of
aggregate functions.

Subqueries: Queries within Queries A subquery allows you to perform a query and
use its result as part of another query. They can be used in WHERE, FROM, and SELECT
clauses.

Example: “Find all employees who earn more than the average salary of all employees.”
1. First, you need to find the average salary: SELECT AVG(salary) FROM employees. 2.
Then, you can use this result to filter the employees table.

A subquery combines this into one statement:

SELECT
employee_name,
salary

FROM
employees

WHERE
salary > (SELECT AVG(salary) FROM employees);

Logical Order of Operations in a SELECT Statement When you write a complex
query, the database does not execute it in the order you typed it. Understanding the
logical execution order is crucial for debugging and writing correct queries. 1. FROM and
JOINs: Determines the initial set of data. 2. WHERE: Filters individual rows. 3. GROUP BY:
Groups the filtered rows into summary groups. 4. HAVING: Filters the summary groups. 5.
SELECT: Selects the final columns to be returned. 6. ORDER BY: Sorts the final result set.
7. LIMIT / OFFSET: Paginates the final result set.

Module 2: Integrating Express.js with PostgreSQL

The Database Driver (pg) & Connection Pooling A “driver” is a piece of software
that acts as a translator, allowing your application (Node.js) to communicate with a
specific type of database (PostgreSQL) using a standardized API. The pg library is the
official and most widely used driver for PostgreSQL in the Node.js ecosystem.

A Connection Pool is one of the most important performance optimizations in a
backend application. Opening and closing a database connection is a slow, resource-
intensive process involving network handshakes and authentication. A connection pool
pre-opens a set of connections and keeps them ready. When your application needs to run
a query, it “borrows” a connection from the pool. When the query is done, it “releases”

3



the connection back to the pool, making it immediately available for another part of
your application. This avoids the setup cost for every query and is essential for handling
concurrent user requests.

The #1 Security Threat: SQL Injection SQL Injection is a code injection technique
used to attack data-driven applications. It occurs when malicious SQL statements are
inserted into an entry field for execution (e.g., to dump the database contents to the
attacker). This happens when you build your query strings by concatenating them with
user-provided input.

Vulnerable Example:

const userInput = "1; DROP TABLE users; --"; // Malicious input
const query = `SELECT * FROM products WHERE id = ${userInput}`;
// Final query becomes: SELECT * FROM products WHERE id = 1; DROP TABLE users; --

The database will execute the SELECT statement, then happily execute the DROP TABLE
users command, and the -- comments out the rest of the original line. Your data is gone.

The Only Solution: Parameterized Queries You must never build queries with
string concatenation. The only safe way is to use parameterized queries. This technique
separates the SQL command from the data.

1. The SQL command is sent to the database with placeholders (like $1, $2 in pg).
2. The database parses this query, understands its structure, and prepares a plan for

execution.
3. Separately, the values (the user input) are sent to the database.
4. The database engine then safely inserts the values into the pre-planned query,

ensuring they are treated only as data, not as executable SQL code.

Even if an attacker sends 1; DROP TABLE users; -- as input, the database will simply
look for a product whose ID is the literal string '1; DROP TABLE users; --', which it
will not find. The malicious part of the string is never executed.

Refactoring the CRUD API: Step-by-Step The process involves replacing every
in-memory array method with an async call to our database pool.

1. Setup the Pool: Create a db/index.js file to configure and export a single Pool
instance for your entire application.

2. Wrap in async/try...catch: Every controller function that interacts with
the database must become an async function. The database call (await
db.query(...)) must be wrapped in a try...catch block. Any errors caught
should be passed to Express’s error handler with next(err).

3. Refactor getAll: const { rows } = await db.query('SELECT * FROM
users'); res.json(rows);

4. Refactor getById: const { rows } = await db.query('SELECT * FROM
users WHERE id = $1', [req.params.id]);

5. Refactor create: const { rows } = await db.query('INSERT INTO ...
VALUES ($1, $2) RETURNING *', [value1, value2]);

6. Refactor update: const { rows } = await db.query('UPDATE ... SET
column1 = $1 WHERE id = $2 RETURNING *', [newValue, id]);

4



7. Refactor delete: await db.query('DELETE FROM users WHERE id = $1',
[id]);

Take-Home Assessment: Refactoring the posts API

Objective: To solidify your understanding of SQL and database integration by refactoring
a complete Express.js resource from using an in-memory array to a persistent PostgreSQL
database.

The Task: You will be given the complete, multi-file Express.js project we built last
week, which has a working CRUD API for users and posts using in-memory arrays.
Your task is to refactor the posts resource to use the PostgreSQL database.

1. Create the Schema: * Write and execute a CREATE TABLE statement for a posts
table that matches the data structure from last week. It should include an id, title,
content, and a user_id column that has a FOREIGN KEY constraint referencing the users
table.

2. Configure the Database Connection: * Create a db/index.js file and configure
a connection pool for your PostgreSQL database.

3. Refactor the postController.js file: * require your database pool. * Go
through every single function (getAllPosts, getPostById, createPost, updatePost,
deletePost). * Convert each function to be async. * Replace all the array-based
logic (posts.find, posts.findIndex, posts.push, posts.splice) with the appropriate
parameterized SQL query using await db.query(...). * Wrap all database logic in
try...catch blocks and pass any errors to next(). * Ensure you are handling 404 Not
Found cases correctly when a query returns no rows.

Submission: Submit your entire refactored project (excluding node_modules) in a Pull
Request to your personal assignments repository. ‘

5


	Month 3, Week 2: The Unabridged Learning Guide
	Introduction: The Permanent Memory
	Table of Contents
	Module 1: Advanced SQL - The Art of the Query
	Module 2: Integrating Express.js with PostgreSQL
	Take-Home Assessment: Refactoring the posts API



