Month 2, Week 4: The Unabridged Learning Guide

Introduction: The Gates of the Application

In our journey so far, we have built a functioning Express.js API. It has well-structured
routes, clean controllers, and can create, read, update, and delete data. However, it has
a catastrophic flaw: it is an open house. Anyone can walk in and do anything. Anyone
can read sensitive data, anyone can modify information, and anyone can delete the entire
dataset.

This week, we build the gates. We learn the non-negotiable, foundational skills of backend
security: Authentication (“Who are you?”) and Authorization (“What are you allowed
to do?”).

We will begin by addressing the single most critical security practice: never storing
plain-text passwords. We will take a deep dive into the art of cryptographic hashing
and salting with bcrypt, the industry-standard tool for protecting user credentials.

Next, we will architect a modern, professional authentication system using JSON Web
Tokens (JWT). This is the cornerstone of the stateless architecture that RESTful APIs
are built upon. We will explore the structure of a JW'T, understand the cryptographic
signature that makes it secure, and learn how to generate tokens for users when they log
in.

Finally, we will put it all into practice by building a custom authentication middleware.
This function will act as the gatekeeper for our protected routes, verifying incoming tokens
and ensuring that only authenticated users can access sensitive endpoints. By the end of
this lesson, you will have transformed your open-house API into a secure, professional-grade
service.

Table of Contents

1. Module 1: The Sanctity of Passwords

o Why Storing Plain-Text Passwords is Unforgivable

o Cryptographic Hashing: The One-Way Street
Salting: Defeating Pre-Computation Attacks
Implementing bcrypt in Practice
2. Module 2: Stateless Authentication with JWT

e The Problem with Server-Side Sessions

e The JWT Solution: A Self-Contained Passport

o Anatomy of a JWT: Header, Payload, Signature
3. Module 3: Implementing JWT in Express.js

e The jsonwebtoken Library

o The Registration Flow: Hashing the Password

e The Login Flow: Comparing the Hash and Signing the Token
4. Module 4: Protecting Routes with Middleware

o The “Gatekeeper” Middleware Strategy

o Writing the Authentication Middleware

o Applying the Middleware to Routes



5. Advanced Concepts & Security Best Practices
o Refresh Tokens
e Storing your JWT Secret
6. Take-Home Assessment: Role-Based Access Control

Module 1: The Sanctity of Passwords

Why Storing Plain-Text Passwords is Unforgivable If an attacker breaches your
database and finds a table of plain-text passwords, you have not just failed technically;
you have failed ethically. Users frequently reuse passwords across many services. A breach
of your application could lead to the compromise of their email, banking, and social media
accounts. The damage is catastrophic. As a professional architect, your primary duty is
to protect your users’ data, and that begins with their credentials.

Cryptographic Hashing: The One-Way Street The solution is to never store the
password itself. We store a hash of the password. A cryptographic hash function is a
one-way algorithm: * Easy to compute: password -> hash * Impossible to reverse:
hash -> password

When a user registers, we hash their password and store the hash. When they log in, we
hash the password they just submitted and compare it to the hash we have stored. If
the hashes match, the password is correct. We never need to know or see the original
password after registration.

Salting: Defeating Pre-Computation Attacks A simple hash is not enough. At-
tackers have pre-computed tables of hashes for common passwords, called “rainbow tables.”
If they find the hash for “password123” in your database, they can look it up in their
table and find the original password.

To prevent this, we use a salt. A salt is a random string of data that is unique to each
user. We combine the salt with the password before hashing it.

hash(password + salt)

Now, even if two users have the same password (“password123”), their stored hashes will
be completely different because they have different salts. Rainbow tables become useless.
The berypt library handles the generation and storage of this salt for you automatically.
The salt is stored as part of the final hash string, so you don’t need a separate database
column for it.

Implementing bcrypt in Practice

e bcrypt.hash(plainTextPassword, saltRounds): This is an async function. The
saltRounds is a “cost factor.” It determines how computationally complex the hash
calculation is. A higher number is slower but exponentially more secure against
brute-force attacks. A value of 10 to 12 is a good baseline today.

e bcrypt.compare(plainTextPassword, hashFromDB): This is also an async func-
tion. It takes the plain-text password the user just submitted and the full hash string
from your database. It will automatically extract the salt from the stored hash,



apply it to the plain-text password, perform the hash, and then do a timing-safe
comparison to see if they match.

Module 2: Stateless Authentication with JWT

The Problem with Server-Side Sessions In traditional stateful applications, after a
user logs in, the server creates a “session” in its memory or database and gives the client
a cookie with a Session ID. On every request, the client sends the cookie, and the server
looks up the session to see who the user is.

This works, but it violates the REST principle of statelessness. It creates problems in
modern, scalable architectures: * Scalability: If you have multiple servers behind a load
balancer, how does Server B know about a session that was created on Server A? You
need complex solutions like sticky sessions or a shared session store (like Redis), which
adds complexity. * Coupling: The client and server are tightly coupled. Other types of
clients (like mobile apps or other backend services) may not work well with web-based
cookies.

The JWT Solution: A Self-Contained Passport A JWT is like a passport. When
you log in, the server (the issuing country) gives you a passport (the JWT) that contains
verifiable information about you (the payload, e.g., your user ID).

When you want to access a protected resource (cross a border), you simply present your
passport. The border agent (the server’s authentication middleware) can look at the
passport, verify its security features (the signature), and confirm that it was issued by
a trusted authority and has not been tampered with. The agent does not need to call
back to the main office (a session store) to check if you are a valid citizen. The passport
is self-contained.

Anatomy of a JWT: Header, Payload, Signature

« Header: Contains metadata. The alg (algorithm) and typ (type) are standard.

« Payload: Contains the “claims” or data. These are statements about an entity.

— Registered Claims: A set of predefined claims like iss (issuer), exp (expira-
tion time), sub (subject). exp is critical for security.

— Public Claims: Custom claims you define, like userId, role, etc. Keep this
data minimal and non-sensitive.

o Signature: This is the security. It is created by hashing the header,
the payload, and a secret key that is known only to your server.
HMACSHA256 (base64UrlEncode (header) + "." + base64UrlEncode(payload),
secret)

Module 3: Implementing JWT in Express.js

The jsonwebtoken Library The jsonwebtoken library is the de facto standard for
working with JWTs in Node.js. Install it with npm install jsonwebtoken.



The Registration Flow: Hashing the Password The registration flow is straight-
forward. Its only job is to validate the input, hash the password, and store the new user
record. It does not return a token. A user must explicitly log in after registering.

The Login Flow: Comparing the Hash and Signing the Token This is a multi-
step process: 1. Find the user in the database by their email/username. If not found, send
a generic “Invalid credentials” error. 2. Use bcrypt . compare() to check if the submitted
password matches the stored hash. If not, send the same generic error. 3. If credentials
are valid, create a payload object for the JWT. Only include the essential, non-sensitive
information needed to identify the user in future requests (e.g., { userId: user.id }).
4. Call jwt.sign() with the payload, your secret key, and options like expiresIn: '1h'.
5. Send the resulting token back to the client in a JSON response.

Module 4: Protecting Routes with Middleware

The “Gatekeeper” Middleware Strategy We will create a single, reusable middle-
ware function. Its only job is to check for a valid JWT. We can then apply this middleware
to any route or router that needs to be protected.

Writing the Authentication Middleware

1. Extract the Token: Look for the Authorization header in the req object. It
should be in the format Bearer <token>.

2. Validate: Check if the header and token exist. If not, send a 401 Unauthorized
response.

3. Verify: Use jwt.verify(token, secret) inside a try...catch block. This func-
tion will throw an error if the token is invalid (bad signature) or expired. If it
throws, the catch block will execute, and you should send a 400 Bad Request or
401 Unauthorized response.

4. Attach Payload: If verify() succeeds, it returns the decoded payload. The best
practice is to attach this payload to the request object: req.user = payload;.

5. Pass Control: Call next () to pass the now-augmented request to the next middle-
ware or the final route handler.

Applying the Middleware to Routes You can apply it to a single route:
router.delete('/:id', authMiddleware, deleteUserController);

Or, you can apply it to an entire router. Any route defined after this use call
will be protected: router.use(authMiddleware); router.patch('/:id', ...);
router.delete('/:id', ...);

Advanced Concepts & Security Best Practices

« Refresh Tokens: JWTs are meant to be short-lived (e.g., 15 minutes). This limits
the damage if one is stolen. But you don’t want to force the user to log in every 15
minutes. The solution is a Refresh Token. When a user logs in, you issue both a



short-lived access token (the JWT) and a long-lived refresh token (a random, secure
string stored in your database). When the access token expires, the client sends
the refresh token to a special /refresh_token endpoint. The server validates the
refresh token against the database and, if valid, issues a new access token.

e Storing your JWT Secret: Never hard-code secrets in your source code. They
should be stored in environment variables. Create a .env file (and add it to
.gitignore!), and use a library like dotenv (npm install dotenv) to load these
variables into process.env.

Take-Home Assessment: Role-Based Access Control

Objective: To extend the in-class exercise by implementing a simple authorization
system.

The Task: Building on the secured API from the in-class exercise: 1. Add a role
property to your user objects in the in-memory array. Make one user an 'admin' and
the others 'user'. 2. When you generate the JWT during login, include the user’s
role in the payload. 3. Create a new middleware function called adminOnly.
This middleware should run after your main authMiddleware. 4. The adminOnly
middleware should check if req.user.role is equal to 'admin'. * If it is, it should call
next (). * If it is not, it should send a 403 Forbidden status with an error message.
5. Apply the middleware: * The DELETE /users/:id route should now require both
authMiddleware and adminOnly. A regular user should not be able to delete anyone.
* The PATCH /users/:id route should have more complex logic: an admin should be
able to patch anyone’s profile, but a regular user should only be able to patch their own
profile. You will need to add this logic inside the controller, comparing req.user.userId
to req.params.id.

Submission: Submit the entire updated project via a Pull Request to your personal
assignments repository.



	Month 2, Week 4: The Unabridged Learning Guide
	Introduction: The Gates of the Application
	Table of Contents
	Module 1: The Sanctity of Passwords
	Module 2: Stateless Authentication with JWT
	Module 3: Implementing JWT in Express.js
	Module 4: Protecting Routes with Middleware
	Advanced Concepts & Security Best Practices
	Take-Home Assessment: Role-Based Access Control



