
Month 2, Week 3: The Unabridged Learning Guide

Introduction: From Theory to Application
In the previous weeks, we have forged our tools. We mastered the command line,
established version control with Git, and learned the core syntax and asynchronous nature
of modern JavaScript. We are now standing at a pivotal moment: the transition from
writing isolated scripts to architecting a complete, functioning backend application.

This week, we build our first real API.

We will begin by establishing the architectural blueprint for modern web services: REST
(Representational State Transfer). We will learn its core principles, how to model
data as resources, and how to use standard HTTP methods and status codes to create a
predictable, scalable, and professional API.

Then, we will put that theory into practice. Using Express.js, we will build a complete
CRUD (Create, Read, Update, Delete) API for a “users” resource. To isolate the
API logic from database complexity, we will start with a simple in-memory datastore
(a JavaScript array). This intentional constraint allows us to focus entirely on mastering
the request-response cycle, data validation, and the professional project structure that
separates a simple script from a maintainable application. By the end of this lesson, you
will have built, from the ground up, a working API that can create, retrieve, modify, and
delete data.

Table of Contents

1. Module 1: The Principles of RESTful Architecture
• What is an API? What is REST?
• The Core Constraints of REST
• Uniform Interface: The Four Pillars
• HTTP Verbs & CRUD Operations
• Resource Naming Conventions
• HTTP Status Codes: The Language of Responses

2. Module 2: Architecting and Building the Express API
• The “Separation of Concerns” Project Structure
• The In-Memory Datastore
• Implementing the Full CRUD Lifecycle

3. Take-Home Assessment: The posts Resource API

Module 1: The Principles of RESTful Architecture

What is an API? What is REST? An API (Application Programming In-
terface) is a contract that allows two pieces of software to talk to each other. For web
services, this usually means a client (like a browser or mobile app) talking to a backend
server. The API defines the rules of that conversation: what questions the client can ask,
how they should ask them, and what kind of answers they can expect.

1



REST (Representational State Transfer) is the most popular architectural style for
designing these APIs. It’s not a rigid protocol like a law, but a set of guiding principles or
constraints. When followed, they lead to APIs that are scalable, reliable, and easy for
developers to understand and use.

The Core Constraints of REST

• Client-Server: The client and server are separate entities. The client is concerned
with the user interface, and the server is concerned with storing and manipulating
data. This separation allows them to evolve independently.

• Statelessness: This is a critical constraint. It means that every single request
from a client to a server must contain all the information needed for the server to
process it. The server does not store any information about the client’s session
between requests. This makes the system highly scalable, as any server can handle
any client’s request at any time.

Uniform Interface: The Four Pillars This is the most important constraint, ensuring
every REST API, regardless of who built it, has a similar, predictable feel.

1. Identification of Resources: Everything is a resource (a “noun” in your system,
like a user or a product). Each resource is uniquely identified by a URI (Uniform
Resource Identifier), like /users/123.

2. Manipulation of Resources Through Representations: The client doesn’t
get the actual object from your database. It gets a representation of that object
(usually in JSON format). The client then sends back a modified representation to
update the resource.

3. Self-descriptive Messages: Each request and response contains enough informa-
tion to describe how to process it (e.g., the HTTP verb tells the server what to do,
and the Content-Type header tells the client what kind of data it’s receiving).

4. Hypermedia as the Engine of Application State (HATEOAS): This ad-
vanced principle states that a response should include links to other related ac-
tions or resources. For example, a response for a user might include a link to
/users/123/posts.

HTTP Verbs & CRUD Operations REST leverages the existing, well-defined verbs
of the HTTP protocol to perform actions. This is the heart of the “Uniform Interface.”

CRUD HTTP Verb Idempotent? Description
Create POST No Creates a new

resource. Making
the same POST
request twice will
create two identical
resources with
different IDs.

2



CRUD HTTP Verb Idempotent? Description
Read GET Yes Retrieves a resource

or a collection of
resources. Making
the same GET
request multiple
times has no side
effects.

Update PUT Yes Replaces an entire
resource with the
new data provided.
The same PUT
request will always
result in the same
final state.

Update PATCH No Applies a partial
update to a resource.
Making the same
PATCH request twice
could have different
results (e.g.,
incrementing a
value).

Delete DELETE Yes Deletes a resource.
Deleting the same
resource multiple
times has the same
outcome: it’s gone.

Idempotency is a key concept: an operation is idempotent if making it multiple times
has the same effect as making it once. This is a desirable property for APIs, as it makes
them more resilient to network errors.

Resource Naming Conventions

• Use plural nouns: /posts, /users, /products.
• Use path parameters for specific items: /posts/:postId, /users/:userId.
• Use nested resources for relationships: /users/:userId/posts (Get all posts

for a specific user).
• Use query parameters for filtering and sorting: /posts?status=published&sort=date_desc.

HTTP Status Codes: The Language of Responses

• 2xx (Success): 200 OK, 201 Created, 204 No Content.
• 4xx (Client Error): 400 Bad Request, 401 Unauthorized (not authenticated),

403 Forbidden (authenticated, but not allowed), 404 Not Found.
• 5xx (Server Error): 500 Internal Server Error.

3



Module 2: Architecting and Building the Express API

The “Separation of Concerns” Project Structure

• data/: This layer is responsible for data storage. Right now, it’s a simple array. In
the future, this is where our database logic will live.

• controllers/: This layer contains the business logic. It’s the “brain” of each
request. A controller function takes the req and res objects, uses services or data
layers to perform its task, and sends the response.

• routes/: This layer is the “switchboard.” It defines the URL paths and HTTP
verbs and maps them to the appropriate controller functions. It knows nothing
about how the work gets done, only who to give the work to.

• app.js: The entry point of our application. It’s responsible for starting the server,
loading global middleware, and mounting the routers.

The In-Memory Datastore We are using a simple JavaScript array to store our data.
This is a deliberate choice. It allows us to build and test our entire API—the routing,
controllers, validation, and error handling—without getting bogged down in database
setup. It isolates the problem we are trying to solve. The data is not persistent; it will
be reset every time the server restarts.

Implementing the Full CRUD Lifecycle Here, we will detail the logic for each
controller function.

• Create (POST /users):
1. Validation: Check req.body to ensure required fields like name and email are

present. If not, immediately send a 400 Bad Request response with a clear
error message and return to stop execution.

2. ID Generation: In a real database, this is handled automatically. Here, we
simulate it with a simple nextId++ counter. Never trust a client to provide a
unique ID.

3. Creation: Create a new user object.
4. Storage: push the new user object into our in-memory users array.
5. Response: Send a 201 Created status code and include the newly created

user object in the JSON response. This is helpful for the client, as it now has
the server-generated ID.

• Read (GET /users and GET /users/:id):
1. Get All: The controller for GET /users is simple: it just sends the entire

users array as a JSON response with a 200 OK status.
2. Get One by ID:

– Extract the id from req.params.id. Remember that path parameters are
always strings, so you must use parseInt() to convert it to a number for
strict comparison.

– Use the Array.find() method to search the users array for a user with
a matching ID.

– Handle “Not Found”: If find() returns undefined, it means no user
with that ID exists. Immediately send a 404 Not Found response with an

4



error message.
– If a user is found, send it as a JSON response with a 200 OK status.

• Update (PATCH /users/:id):
1. Find the User: Use the same logic as “Get One by ID” to find the user in

the array. If not found, return a 404.
2. Partial Update: Check which fields are present in req.body. For each present

field (e.g., name, email), update the corresponding property on the user object
you found. This is why PATCH is useful—the client only needs to send the fields
they want to change.

3. Response: Send the now-updated user object back to the client with a 200
OK status.

• Delete (DELETE /users/:id):
1. Find the Index: Instead of just finding the user, we need to find their position

in the array. Use the Array.findIndex() method for this. If it returns -1,
the user was not found, so send a 404.

2. Remove from Array: Use the Array.splice(index, 1) method to remove
one element at the found index. This mutates the original users array.

3. Response: The operation was successful, but there is no user object to return.
The correct response is a 204 No Content status with an empty body.

Take-Home Assessment: The posts Resource API

Objective: To solidify your understanding of RESTful principles and Express architecture
by building a new CRUD resource from scratch.

The Task: You will be given a project with the working users API we built in class.
Your task is to architect and implement a new, complete CRUD API for a posts resource.

1. Create the Data Store: * Create a new file: data/posts.js. * Export an array of
post objects. Each post must have an id (number), title (string), content (string), and
a userId (number, to represent who wrote the post).

2. Create the Controller: * Create a new file: controllers/postController.js.
* Implement all five controller functions: getAllPosts, getPostById, createPost,
updatePost, and deletePost. Follow the exact patterns we used for the user controller
(validation, ID generation, error handling, etc.).

3. Create the Router: * Create a new file: routes/postRoutes.js. * Define all
five RESTful routes (GET /, GET /:id, POST /, PATCH /:id, DELETE /:id) and connect
them to your new controller functions.

4. Mount the Router: * In app.js, require your new postRoutes router. * Mount
it at the path /posts using app.use().

5. Test Thoroughly: * Use a tool like Postman or Insomnia to test every single one of
your new endpoints. * Test the “happy path” (successful requests). * Test the “unhappy
path” (e.g., trying to get a post that doesn’t exist, creating a post with missing data).

Submission: Submit your updated project (including all new files) via a Pull Request to
your personal assignments repository. ‘

5


	Month 2, Week 3: The Unabridged Learning Guide
	Introduction: From Theory to Application
	Table of Contents
	Module 1: The Principles of RESTful Architecture
	Module 2: Architecting and Building the Express API
	Take-Home Assessment: The posts Resource API



