
Month 1, Week 1: The Unabridged Learning Guide

Introduction: The Architect’s Primary Interface
Welcome to the beginning of your journey as a backend architect. Before we can design
and build complex digital structures, we must first master the tools and the terrain.
Our most fundamental tool, the one that connects us directly to the machine, is the
Command-Line Interface (CLI).

While a Graphical User Interface (GUI) is like driving a car with a simple steering wheel
and pedals, the CLI is like having a direct, high-bandwidth conversation with a hyper-
efficient chauffeur. You can issue precise, powerful, and complex commands that would
be slow, repetitive, or outright impossible in a GUI. For a backend engineer, who often
works with remote servers that have no graphical interface at all, mastering the command
line is not optional—it is the very foundation of professional competence.

This guide will walk you through the essential commands for navigating your computer,
manipulating files, and setting up a complete, professional local development environment.
Every command you learn is a new word in your vocabulary for speaking the language of
the machine.

Table of Contents

1. Module 1: Understanding the Shell & Terminal
2. Module 2: Core Navigation Commands
3. Module 3: File & Directory Manipulation
4. Module 4: The System’s Toolkit: PATH & Package Managers
5. Module 5: Forging the Local Development Environment
6. Take-Home Assessment: The Project Scaffolding Script

Module 1: Understanding the Shell & Terminal

It’s common to use “terminal” and “shell” interchangeably, but for an architect, precision
matters. * The Terminal (or Terminal Emulator): This is the GUI application
window that you open. It’s the “screen” and “keyboard” for your text-based interaction.
Examples: Terminal.app on macOS, GNOME Terminal on Ubuntu, Windows Terminal. *
The Shell: This is the program running inside the terminal. It’s the command interpreter.
It reads your typed command, figures out what you want to do, and asks the operating
system to do it. Popular examples are bash (Bourne-Again Shell) and zsh (Z Shell).

Module 2: Core Navigation Commands

These three commands are the most frequently used. Mastering them is like learning to
walk.

• pwd (Print Working Directory): Your digital GPS. It tells you your exact,
unambiguous location (your “absolute path”) in the filesystem.

1

• ls (List): Your eyes. It shows you the contents of the directory you are currently
in.

– Common Flags: Flags are options that modify a command’s behavior. They
usually start with a hyphen.

∗ ls -l: Use the “long” format, showing a detailed, multi-column view with
permissions, owner, file size, and modification date.

∗ ls -a: Show “all” files, including hidden files (like .git or .env) which
are crucial for developers.

∗ ls -la: Combine the flags to get a detailed view of all files.
• cd (Change Directory): Your legs. This moves you from one directory to another.

– Absolute Paths: Start from the root (/) of the filesystem. They are a
complete address and work from anywhere. E.g., cd /var/log.

– Relative Paths: Start from your current location (pwd). They are shorter
and more convenient for nearby navigation. E.g., if you are in /home/user, cd
projects will take you to /home/user/projects.

– Special Shortcuts:
∗ cd ..: Move to the parent directory.
∗ cd ~: Instantly return to your home directory.
∗ cd -: Jump back to the last directory you were in.

Module 3: File & Directory Manipulation

These commands allow you to create, copy, move, and delete the files and folders that
make up your projects.

• mkdir (Make Directory): Creates a new folder.
– mkdir my-project
– Pro-Tip: mkdir -p api/v1/controllers uses the -p (parent) flag to create

the entire directory tree, even if api and v1 don’t exist yet.
• touch (Create File): Creates a new, empty file. If the file already exists, it updates

its modification timestamp.
– touch server.js

• cp (Copy): Copies files or directories.
– cp source.js destination.js
– To copy a directory, you must use the -r (recursive) flag: cp -r my-project/

my-project-backup/.
• mv (Move): Moves or renames files and directories.

– To Move: mv server.js src/ (moves server.js into the src folder).
– To Rename: mv server.js app.js (renames server.js to app.js in the

same directory).
• rm (Remove): Deletes files and directories permanently. There is no “Trash” or

“Recycle Bin” on the command line. This action is irreversible.
– rm old-file.txt
– To delete an empty directory: rmdir my-empty-folder.
– To delete a directory and everything in it: rm -r my-folder-to-delete/.
– Extreme Danger: The rm -rf / command (r for recursive, f for force)

will attempt to delete your entire operating system. Use rm with respect and

2

caution.

Module 4: The System’s Toolkit: PATH & Package Managers

The PATH Environment Variable The PATH is one of the most important “environment
variables” on your system. It’s a simple, colon-separated list of directory paths. When
you type a command like node or git, your shell doesn’t magically know where that
program is. It performs a search: it looks for an executable file named node inside the first
directory listed in your PATH. If it finds it, it runs it. If not, it checks the second directory,
and so on. If it searches all directories in the PATH and doesn’t find the command, it gives
you the “command not found” error. This is why software installers often ask to “add the
program to your PATH.”

You can view your path at any time by running: echo $PATH.

Package Managers A package manager is an “App Store” for command-line software.
It handles the difficult work of: * Finding the correct software for your OS. * Installing
it to the correct location (and adding it to your PATH). * Managing Dependencies:
If Program A needs Library B to run, the package manager will automatically install
Library B as well. * Updating and removing software cleanly.

• Homebrew (macOS): The de facto standard for macOS developers. brew install
<package_name>.

• APT (Debian/Ubuntu): The built-in package manager for Debian-based Linux.
sudo apt install <package_name>.

Module 5: Forging the Local Development Environment

This is the practical setup for a professional backend developer.

• Visual Studio Code (VS Code): A powerful, free, and extensible code editor.
Download from the official website.

– Essential Extensions: Prettier (code formatter), ESLint (code linter),
GitLens (Git supercharger).

• Node Version Manager (nvm): Installing Node.js directly can lead to problems
when you need to switch between different Node versions for different projects. nvm
solves this by allowing you to install multiple versions and switch between them
with a simple command (nvm use 16, nvm use 18, etc.). This is a senior-level best
practice.

• Node.js: The JavaScript runtime that allows us to run JS on a server. We install
it via nvm. Always start with the --lts (Long-Term Support) version, as it is the
most stable.

• Git: The version control system we will master in Week 2. We install it now as
part of our core toolkit.

3

Take-Home Assessment: The Project Scaffolding Script

Objective: To demonstrate mastery of command-line tools by creating a simple shell
script that automates a common task.

The Task: Create a file named setup_project.sh. This file will be a shell script that,
when executed, creates a complete, standard folder structure for a new Node.js project.

1. Create the Script File: touch setup_project.sh

2. Write the Script: Open setup_project.sh in VS Code and add the following
commands. The #!/bin/bash line is called a “shebang” and tells the system to execute
this file using bash. The echo commands provide feedback to the user.

#!/bin/bash

echo "Creating project structure..."

mkdir -p src/controllers src/services src/routes tests/

touch src/app.js
touch src/server.js
touch .gitignore
touch README.md

echo "Adding node_modules to .gitignore..."
echo "node_modules/" > .gitignore

echo "Project structure created successfully!"
ls -R

3. Make the Script Executable: By default, text files are not executable. You need
to change its permissions. chmod +x setup_project.sh (chmod means “change mode”,
+x means “add executable permission”).

4. Run the Script: ./setup_project.sh

Submission: Submit the setup_project.sh file via a Pull Request to your personal
assignments repository. ‘

4

	Month 1, Week 1: The Unabridged Learning Guide
	Introduction: The Architect’s Primary Interface
	Table of Contents
	Module 1: Understanding the Shell & Terminal
	Module 2: Core Navigation Commands
	Module 3: File & Directory Manipulation
	Module 4: The System’s Toolkit: PATH & Package Managers
	Module 5: Forging the Local Development Environment
	Take-Home Assessment: The Project Scaffolding Script

